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Generalized Jensen-Hermite-Hadamard Mercer Type Inequalities for
Generalized Strongly Convex Functions on Fractal Sets
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*Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Pakistan

Abstract. In this paper, we present a variant of discrete Jensen-type inequality for generalized strongly
convex functions on a real linear fractal set R* (0 < a < 1). Further, we also demonstrate a generalized
Jensen—-Mercer type inequality for generalized strongly convex function by employing local fractional
calculus. Using this generalized Jensen-Mercer inequality, we establish a Hermite-Hadamard-Mercer type
inequalities for generalized strongly convex functions.

1. Introduction

Convexity theory has emerged as a useful tool for studying a diverse range of problems in both pure
and applied sciences. Convex functions play an important role in mathematical inequalities. Convexity
theory has many applications in a variety of fascinating and compelling fields of inquiry, as well as its
significant contributions to coding theory, optimization, physics, information theory, engineering, and in-
equality theory. The Hermite-Hadamard inequality is one of the most well-known inequalities for the class
of convex functions. Many articles on convex functions and inequalities have been written by a number of
mathematicians for their various classes, utilizing, for example, the most recent publications can be found
in the monographs (see, [1-3]).

Definition 1.1. Let I C R be an interval and c be a positive number. A function ® : I — R is called generalized
strongly convex function with modulus c if

D(Ax + (1 - A)y) < AD(x) + (1 = V)P(y) — cA(1 — A)(x — y)z,
forallx,y e land A € [0, 1].

In this definition, if we take c=0 we get the definition of convexity in the classical sense. Strongly convex
functions have been introduced by Polyak [4] In 1966. Every strongly convex function is also convex, but
this is not always the case. The convergence of a gradient type approach for minimizing a function has been
demonstrated using strongly convex functions. Strongly convex function play a vital role in mathematical
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economics, optimization theory, and approximation theory. A lot of applications and properties can be seen
in [5-7].

For different classes of generalized convex functions, a variant of the Jensen inequality is proved, and
the class of strongly convex functions is one of them.

Theorem 1.2. [5](Jensen-type inequality) Suppose that O : | — IR* is strongly convex function with modulus c.

n n n
Z Al‘x,'] < Z AiD(xi) — ¢ Z Ai(x; — J_C)z.
i=1 i=1 i=1

foranyx;eland A; € [0,1]1 1 =1,2,..,n) with }, A; = land X = }, Aix;.
i=1 i=1

O

This classical Jensen inequality is one of the most important inequalities in convex analysis with appli-
cations in mathematics, economics, statistics, and engineering sciences ( see [8-10]). The Jensen inequality
has a lot of interesting studies in the literature for example, the Jensen-Mercer inequality is a new form of
the Jensen inequality proposed by Mercer in [11].

In 2003, Mercer presents a variant of Jensen’s inequality as:

Theorem 1.3. [11] Suppose that ® is a convex function on [Cy, C,], we have

n
D C1+Cn—2wiﬂi
P

<O(C)+P(G) - Y wiP(@)
i=1

n
forall a; € [Cy, ] and w; € [0,1], wherei=1,2,...,nwith Y, w; = 1.
i=1

Fractional calculus is a field of mathematics that investigates the various methods of defining real num-
ber powers and complex number powers of the differentiation and integration operators. Within the topic
of fractional calculus, there are two separate approaches: generalised fractional calculus and local fractional
calculus. While both deal with non-integer orders of differentiation and integration, they have different
underlying principles and applications.Generalized fractional calculus extends traditional fractional calcu-
lus by introducing new operators and functions that can capture a wider range of behaviors. It focuses
on developing operators and functions that go beyond the limitations of the classical Riemann-Liouville
fractional integral and derivative. Generalized operators may include Caputo, Grunwald-Letnikov, or
Riesz fractional derivatives, among others. These operators may have different applications in modeling
in dynamics and Chaos and to develop new inequalities (see [12-15]). Local fractional calculus, on the
other hand, is a different approach that involves fractional derivatives and integrals that are based solely
on local properties of a function, rather than the entire function. A combination of fractional fractal cal-
culus was developed for modeling attractors of chaotic dynamical systems and explore new directions in
numerical analysis (see [16-18]). It focuses on analyzing properties of functions within a restricted range.
Local fractional calculus is one of the most useful techniques for dealing with fractal and continuously
non—differentiable functions. The concept of local fractional calculus has piqued the curiosity of mathe-
maticians, as well as physicists and engineers. Yang [19] stated the theory of local fractional calculus on
fractal space. Local fractional calculus is a generalization of differentiation and integration of the functions
defined on fractal sets. Fractals help us study and understand important scientific concepts, such as the way
bacteria grow, patterns in freezing water (snow flakes) and brain waves. After Mandelbrot [20] published
his seminal book, fractals have been found valuable in science as well as engineering. Mo et al. [21] defined
the generalized convex function on the fractal space R* (0 < a < 1) of a real numbers and established the
generalized Jensen’s inequality and generalized Hermite-Hadamard’s inequality for a generalized convex
function in the concept of local fractional calculus. A huge literature is present on fractal Hermite-Hadamrd,
Ostrwoski, and Hermite-Mercer type inequalities (see [23-29]).
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2. Preliminaries

We recall the theory of local fractional calculus. The concepts and important consequences associated with
the local fractional derivative and local fractional integral are as follows:

For 0 < @ £ 1, we have the following a-type set of element set:
7% = {04, £1%, £2%, ..., £n%, ...}
Q*={m* =(c/d)* :c,d e Z,d # 0}.
J¢ ={m* # (c/d)* : c,d € Z,d # 0}.
R* =Q* U J“.
If r*,s%, t* € R* then the following operations satisfy
(1) r* +s* e R, r*s* € RY;
{)r*+s*=s+r*=F+s)*=(+n7%
(i) r* + (s +tY) = (r +5)* + 1%
(iv) r*s* = s*r* = (rs)* = (sr)%;
(V) r*(s*t*) = (r*s“)t%;
(vi) r*(s® + ) = r¥s* + rt;
(Vi) r* + 0% = 0% + r* = 7%, r*1* = 1% = ™,

To introduce the local fractional calculus on IR*, we begin the concept of the local fractional continuity as:

Definition 2.1. [19] A non-differentiable mapping ® : R — R%, x — O(%) at xg is named local fractional
continuous at x, if for all € > 0 exists 6 > 0 such that

1(2) — Do)l < €

holds for |x — x| < O, for all €, 0 € R. If D(x) is local fractional continuous on the interval (Cy,C,) then we write
@(}t) € Ca(Cl; Cn)

Definition 2.2. [19] The local fractional derivative of () of order o at x = ng is

d°D(x) A% (D(x) — P(x0))
dxe *=r0 T u—xe (% — %)

where A*(D() — D)) = T (1 + a) (O(%) — D(%0)).

LRICHE

7

Definition 2.3. [19] If ® € C,[C1,C,], then the local fractional integral of ©(») of order a is

Cn
ﬂﬁmli@wwma

M-1
1
= li E s s a,
Ird+a) A;;TO O(D(w J(Aws)

S=l

o 1D(30) =

where Aw; = wqq — ws, Aw =max {Awgls = 1,2,...,M — 1}, and [ws, ws1],s =0,1,.., M =1 withwy = {3 < wy <
e SWj < oo < Wp—1 < Wy = Gy B5 a partition of [Cq, Cl.

Here, it implies that Cllé“)qD(%) =0if{y =, and Cllé“)qb(%) =— gnlg)q)(%) if & < Cy. If for any » € [C4, Ty,
there exists Clléa)q)(x), which we denoted by ®(x) € Iif‘)[Cl, Cal-
Define the Mittag-Leffler function [19] on fractal sets R* (0 < a < 1) is given by

(o) %ka
ay
E,(x*) = kzzo —F(l k) x € R.
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Lemma 2.4. [19]
GIVEL () = EolC3) = EalC))-

and

dEy(cx®) i
aAxe = ¢Ea(cx®)

where ¢ is a constant.

Lemma 2.5. [19]

(i) If ®(3) = DD(3) € CalCy, Cul,
then we have
L1 D) = D(T,) - B(G).
(ii) If ©(x), ©(%) € Du[Cy, Cu] and O (x), P(x) € Colly, Cul,
then we have
G 12 DOV (30) = DEODGO — ¢, 12 DD ()D(0)

Lemma 2.6. [19]

a*»x  T'(l1+1a) (t-1)a.
dws T+ (t-1a) ’
and
1 o [(1+1a) (t+ha _ A(r+la
I Iy) = ——— 7 T _
o). @ = i yo™ G
while T € R.

Rainier etal. [22] propose the idea of a generalized strongly convex function on a fractal set with modulo
c.

Definition 2.7. Let I C R be an interval and c be a positive number. A function @ : I — R* is called generalized
strongly convex function with modulus c if

D(Ax + (1 = A)y) < A%D(x) + (1 — 1)*D(y) — c*A*(1 — 1)*(x — y)** (1)
forallx,y € Iand A € [0, 1].

Remark 2.8. . It is to be noted that

1. If @ = 1 then generalized strongly convex functions derives strongly convex function.
2. If ¢ = 0 then generalized strongly convex functions derives generalized convex function.
3. If a = 1and ¢ = 0 then generalized strongly convex functions derives convex function.

Theorem 2.9. [22] A function @ : I — R* is generalized strongly convex with modulus c if and only if the function
g : I > R* defined by g(x) = O(x) — c*x** is generalized convex.
Theorem 2.10. [22](Generalized Jensen-type inequality) Suppose that @ : I — R® is a generalized strongly

n n
convex function on I. Then for any x; € Iand A; € [0,1] i = 1,2,...,n) with ), A; = 1L and X = }, Ajx;, we have
i=1 i=1

Zn: Aixi] < Z A D(x;) — ¢ Z A% (xi — ). )
i=1 i=1 i=1

O
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Theorem 2.11. [22] (Generalized Hermite—Hadamard-type inequality) If O : I — R" is a generalized strongly
convex function on I = [a,b] and ® € I,((“) [a, b], then

a+b\ . (a+b\* TA+a)| TA+20) 5 4
CD( 5 )—C (D( > ) < (b—a)"‘ [“Ib @(X)—C m(b —a )]

2a 20
SCD(a)+<D(b)_Ca a** +b '
2a 2
Recently, Butt et al. [31] established the generalized Jensen-Mercer inequality.

Theorem 2.12. Generalized Jensen—Mercer inequality Let I = [Cy, C,] C R be an interval and @ be a generalized
convex function, then the following inequality holds

n
Ci+Ci— Zwi X
i1

The principal aim of this paper is to present some results related to the Jensen-Mercer inequality in the
framework of generalized strongly convex function on fractal sets. We establish generalized Jensen-Mercer
type inequalities and generalized Hermite-Hadamard-Mercer type inequality for generalized strongly con-
vex function in fractal space.

jO)

SD(C)+D(C) - Y WD ().
i=1

The article is organized as: In Section 3, we drive a variant of Jensen-type inequality for a generalized
strongly convex function on a real linear fractal set R* (0 < & < 1). In order to prove this inequality, we need
amain lemma on fractal sets which is presented in this section. We establish generalized Jensen-Mercer type
inequality for this class of function. In Section 4, generalized Hermite-Hadmard-Mercer type inequality for
a generalized strongly convex function are obtained.

3. Generalized Jensen-Mercer type inequality

Lemma 3.1. Let @ : [ — R is a generalized strongly convex with modulus c, then

Oy + Gy — C) < D(C1) + P(Cy) — D(C) — 2% A% (1 = A)* (T — T)™, 3)
where A; € [0,1], 1 = {1<1i<n(:i, Ch = {1<1.ja<x(,i and C; € L.

Proof. Lety; =01 +C, —Cifori=1,2,..,n, then §; + C, = (; + y;. We may write
CGi=AiG+ (1= A)C,
and
yi=1=A)C + AiCy,
where 0 < A; £ 1and 1 <i < n. Hence, applying generalized Jensen inequality, we get
O(yi) = D((1 = A)C1 + AiCn)
< (1= )P R(C) + ALR(C) = € AK(L = A)* (T = )
= O(C1) + D(Cy) — (ATD(C) + (1 = A)*D(Cy)) = AL = A3)* (1 — Cu)™
< D(G) + D(Ch) = DA+ (1= A)Cy) = 2% AK(1 = A)*(Cr = 6™

= D(C1) + D(Cy) = DC) = 2% AL (1 = A)™ (G = C) ™.
Therefore, inequality (3) follows from y; = (; + (, = G O
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Theorem 3.2. (Generalized Jensen-Mercer type inequality) Let @ : I — R® is a generalized strongly convex
with modulus c, then

O]
i=1

G+Gi- ) wici]
< D(C) + PC) - Y | WD) 4)
i=1

_Ca

n n
20 Y WIAKL - A)HG - G+ Y (G- O,
P i=1
where C = Y, wiCi, Y, wi =1, A; € [0,1], & = ming;, C, = max{;and (; € L.
1<i<n 1<i<n

i=1 i=1

Proof. Since ), w; = 1 and by Lemma 3.1, we have
i=1
G+Gi- ) wici]
i=1
Y wilG+ G- co]
i=1

<Y @O+ G- 0) - ) @i (G- O
i=1 i=1

jO)

=0

< D) + DC) - Y | @ID(C) - Y| @20 AN = A)H(C - 6
i=1 i=1
-t ) @G- O
i=1
= B(Lr) + B(C) — ) WD)
i=1

—c*|2¢ ; WI AN (L =AY (G = 5™ + Zl: Wi (G = 0.

This completes the proof. [

Remark 3.3. s

1. If & = 1 then inequality (4) gives Jensen-Mercer inequality for strongly convex function proved by Moradi in
[30].

2. If ¢ = 0 then inequality (4) gives generalized Jensen-Mercer inequality for generalized convex function proved
by Butt et al. in [31].

3. Ifa = 1and c = 0 then inequality (4) gives Jensen-Mercer inequality for classical convex function [11].
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Theorem 3.4. Let ® : I — R® be a generalized strongly convex function on I = [Cy,C,] with modulus ¢ and
Ai € [0,1]. Then

O(C1+Ci—0)

<Y @D+ G = (1= )G+ AD) = ¢ ) (1= AP (G = O
i=1 i=1
< O(C) + D) - Y I D(T)
i=1

—ct[20 Y WA - )G - C)F + Y (G- 0,

i=1 i=1

forall G € [C1, Gl and w; € [0,1] G = 1,2,y ) with ¥, w; = 1, where £ = Y.
i=1 i=1

Proof. Firstly, since @ is generalized strongly convex function, we have

Y @PR(C + Gy = (1= )G+ AQ) = € Y (1= A(G = O
i=1 i=1

> @Y @il + G = (1= A+ AD)

i=1

= cD(Cl +Cn _Z)
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On the other hand

Y @I+ Gy = (1= )G+ AD) — e Y w1 = 4™ (G - O

i=1 i=1

= Y D1 = )T+ T — 8+ MG+ Go = D) =@ Y (1= A(C - O

i=1 i=1

< Y 0|1 AP + 8= 0+ AP+ - D) - N = A G- O

i=1
— e Y W= AP(C - O
i=1

< w?‘[(l = M) [@(C1) + P(Ca) = D(C) = 2% AT (1 = A)* (G = Ca)™]

i=1
AR + D) = ) @fDC) + ¢ ) @G = O = 20 AT (1 = A)" (@ = 6]
=1 i=1
— AN = AN - )2‘”] ¢ Z WF AT (1= (G = O
< (1) + DC) - Y @ D(T)
i=1

[2“ Z Wf A1 =A™ (G - Co)™ + Z (G — o> .
i1

This completes the proof. [

4. Generalized Hermite-Hadamard-Mercer type inequality

Theorem 4.1. If ® € If)[Cl, Cn] and @ be a generalized strongly convex function on [Cy, Cy], then
+b +b
cb(cl G- ) ca[(cl G- ) - @+ 8]
F(l + )
)a

2

LT(1 +2a)
F(l + 3a)

< D((y) + D) - [al(“’cb( ) — % - 113“)]

58
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59
and
a+b " a+b\*
q)(Cl‘i'Cn—T)—C (Cl +Cn_T)
F(l + CV) (@) _ al"(l + 20[) 30 3a

= B=ap Lot e r( +3oc)( ! )]
PG+ G =) + DG +Cu - b) _Ca((cl G + (G + G —b)Z“)
N 24 24

D(a) + OB 2 4 g2
<o)+ o) - DO (e - ), ©

foralla,b € [Cy, Gyl

Proof. Suppose that® € 19[¢;, ¢, ]and Disa generalized strongly convex function then by Theorem 2.9, this
is equivalent to saying that the function g : [Cy, C,] — R® defined by g(x) = ®(x) —c*x%% ig generalized convex.

By [[32], Theorem 3.1], the above implies that the generalized Hermite-Hadamard-Mercer inequality holds
for g,

ocr 6= 150 <o+ 000 - TS 000

< g(C1) + g(Cy) —q(a * b)

2
)
and
b\ T .
g(aa-"37) s Gmapescatic o)
< g(Cl + Cn —ﬂ)+9(C1 + _b)
< =
b
< 9(@) + g - L2220,
®)

Equivalently, we have (7)

2a
@(cﬁcn—#)—c“(mcn—%)

< QC) + G -G+ B - o

2a
w00 -G+ 3= [o ) (122

VD) — ]

2 2
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Consequently,

a+b a a+b\*
(C Cn ) ) c (Cl+Cn_T)

I'l+a)
(b—a)

2a
o bl (2

I'l+a)Il'(1+2a)

w—awn1+3m(wa_fﬂ

< O(Gr) + O(Co) = NG+ T -

HI;“)CD(x) +

2

Thus, we have

@(C1+Cn—a;b)—ca[(é1 Co— a;b) (Cf“+C§“)]

F(l +a) LT+ 2a)

T(1 + 3a)

20
< D) + DG - [@(“;b) —c“(“ ; b) |

< B(C) + D(Cn) -

[ I(“)CD( )—c® (b3a _ a3a)]

And (8), we have

Q(C1+Cn—%b)— (c cn—“b)

F(l + 0() (@)

< ool 0w~

PG+ G =)+ PG + T - b) _Ca(«:l G+ G+ —b)“)
- 24 24

< O(Gr) + O(Co) = G+ ) ~

D)+ Db) | (2 + b
22 20

Thus, we have

2a
cD(c g—#)—c (aw—#)
F(l + a) (@) F(l + 205)

(b a)® G+l bIC1+C —flq)(x) - 1"(1 + 30[)( b - 301)]

PG A —a)+ D+ G- b) _Ca((C1 + G —a)* + (G +Cn—b)2“)
= 24 29

< D(T) + DG, - w

20 20
a4+ b
e (C%a + Cia _ 5 )

This completes the proof. [
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Figure 1: Graphical behaviour of Left, Middle and Right Terms of 9.
Remark 4.2. s
1. If @ = 1 then the inequalities 5 and 6 of Theorem 4.1 reduces to the following inequalities.
2
a+b a+b
®0;+Cn__3_)_%(Q+Cn__E_)_(q+cb]
< B(0) + D) - [0 - S0 - )
= 1 n (b — lZ) alb 3
a+b a+b)
S¢(C1)+®(Cn)—®( > )+C( > ) ©)

and

2
cb(c1+cn—“;b)—c(cl+cn—’%b)

: Cc
< M[C1+Cn—bIC1+Cn_ﬂCD(x) _ g(b3 _ aa)]

< ®(C1+Cn_a)+q)(C1+Cn_b) _C((Cl+Cn_a)2+(C1+Cn_b)2)
- 2 2
D(a) + ()

2 2
<o) o) - HE0 (g - S50,

(10)
foralla,b e [Cq,Cyl.
Consider the following example for the validity of 9 and 10 inequalities.

Example 4.3. The following graphs of strongly convex function ®(x) = x*>—cosx for c=0.2 and [C1, C,] = [0, 1]
foralla,b € [Cq,Cy] show the validity of 9 and 10 inequalities.

2. If ¢ = 0 then the inequalities 5 and 6 of Theorem 4.1 reduce to generalized Hermite-Hadamard-Mercer type
inequalities for generalized convex function of Theorem 3.1. proved by Butt et al. in [32].
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| |l Right Term
| Middle Term
B Lett Term

Figure 2: Graphical behaviour of First, Second, Third and Fourth Terms of 10.

3. If o =1 and c = 0 then the inequalities 5 and 6 of Theorem 4.1 reduce to the inequalities proved by Kian and
Moslehian in [33], Theorem 2.1.
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