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On Midpoint Type Inequalities for Proportional Caputo-Hybrid
Operator
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Abstract. The primary purpose of this paper is to introduce a newly developed generalized identity, which
is rigorously proven, and to apply it in order to present some midpoint type inequalities via a proportional
Caputo-hybrid operator.

1. INTRODUCTION

Definition 1.1. The function f : [a,b] C R — R, is said to be convex if the following inequality holds

fAx+ A =Ny) < Af(x) + A= Df(y)
forallx,y € [a,b]land A € [0,1]. We say that f is concave if (—f) is convex.

The theory of convex functions is a crucial area of mathematics that has applications in a wide range of
fields, including optimization theory, control theory, operations research, geometry, functional analysis, and
information theory. This theory is also highly relevant in other areas of science, such as economics, finance,
engineering, and management sciences. One of the most well-known inequalities in the literature is the
Hermite-Hadamard integral inequality (see, [5]), which is a fundamental tool for studying the properties
of convex functions. This inequality has important implications in many areas of mathematics and has
been extensively studied in recent years, leading to the development of new and powerful mathematical
techniques for solving a broad range of problems.
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where f: I C R — R is a convex function on the interval I of real numbers and 4,b € I witha < b.

These inequalities were first introduced independently by Charles Hermite and Jacques Hadamard in
the late 19th century and has since found numerous applications in various fields of mathematics, including
analysis, geometry, and probability theory. The inequalities states that if a function is convex on a given
interval, then the average value of the function over that interval is bounded from above by the midpoint
value of the function, multiplied by the length of the interval. This inequalities provide a powerful tool
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for estimating integrals and has become a standard result in the theory of convex functions. The Hermite-
Hadamard inequalities have numerous applications in mathematics. For example, they can be used to
solve problems in integral calculus, probability theory, statistics, optimization, and number theory. The
inequalities are also useful in solving physical and engineering problems that require the determination of
function averages. In general, the Hermite-Hadamard inequalities provide a powerful tool for solving a
wide range of mathematical problems. They are widely studied and used in various fields of mathematics,
and their applications continue to grow as new problems are encountered. One of the most widely applied
inequalities for convex functions is Hadamard’s inequality, which has significant geometric implications.
This inequality has been extensively studied in the literature, leading to numerous directions for extension
and a rich mathematical literature (see [4]-[10], [19]).

While fractional calculus has a rich historical background, recent developments in the field, particularly
in the introduction of novel fractional derivative and integral operators by researchers, have revitalized
interest in this area, particularly within applied sciences. This surge in interest has led to the introduction of
numerous new fractional operators into the literature, driven by investigations into the properties of frac-
tional derivative and associated integral operators, such as their singularity and locality, and modifications
to their kernel structure.

Despite ongoing debates surrounding the efficacy of these operators, it is crucial to evaluate their
contributions within the context of their respective problem domains. Though each operator serves a
functional purpose, some may include a memory effect or a general kernel structure, which may make
them more suitable for specific applications. As such, it is essential to consider the functionality of these
operators, alongside their potential to improve the solutions of the problems in which they are employed.
It is shown that derivatives and integrals of fractional type provide an adequate mathematical modelling
of real objects and processes see [12]. Therefore, the study of fractional differential equations need more
developmental of inequalities of fractional type, for some of them, please see ( [1], [3], [11], [13]-[18],
[21]-[24]). Let us begin by introducing this type of inequality.

We give some necessary definitions and mathematical preliminaries of fractional calculus theory which
are used throughout this paper.

Definition 1.2. Let f € Li[a, b]. The Riemann-Liouville integrals J., f and J}!_f of order a > O witha > 0 are defined
by

ar f(0) = f ' (x— ) f(tydt, x>a

1
T(@)
and

T f(x) = f (t—x)*"' f(t)dt, x<b
respectively where T(a) = fooo e”'udu. Hereis J), f(x) = J)_f(x) = f(x).

Now, let’s recall the basic expressions of Hermite-Hadamard inequality for fractional integrals is proved
by Sarikaya et al. in [16] as follows:

Theorem 1.3. Let f : [a,b] = R be a function witha < band f € Ly([a, b]). If f is a convex function on [a, b], then
the following inequalities for fractional integrals hold:

b
) [+ o) < LT @

a+b F(a+1)
f( 2 ) 2(b-

with a > 0.

The following definition is very important for fractional calculus (see [12]).
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Definition 1.4. Let @ > Oand o ¢ {1,2,..}, n = [a] + 1, f € AC"[a,b], the space of functions having n-th
derivatives absolutely continuous. The left-sided and right-sided Caputo fractional derivatives of order o are defined
as follows:

Dy f(x) =

n—a=1 g(n)
T = a)f(x f) f)dt, x>a

and
‘DY f(x) = i f (t—x)""" fOwtydt, x <b.

Ifa =n€{1,2,..} and usual derivative f(” x) of order n exists, then Caputo fractional derivative CDZ‘+ f (x) coincides
with f™(x) whereas CDZ, f (x) with exactness to a constant multiplier (=1)". In particular we have

DY f(x) = “DY_f (x) = f (x)
wheren =1 and o = 0.

The Caputo derivative operator is a fractional derivative operator that is widely used in the field of
fractional calculus. It is defined as the fractional derivative of a function with respect to time, where the
order of the derivative is a non-integer value. The Riemann-Liouville integral operator, on the other hand,
is a fractional integral operator that is also commonly used in fractional calculus.

The proportional Caputo hybrid operator is a mathematical operation that has been proposed as a
non-local and singular operator, incorporating both derivative and integral operator components in its
definition. It can be expressed as a straightforward linear combination of the Riemann-Liouville integral
and Caputo derivative operators, see ([2] and [6]).

Definition 1.5. Let f : [ ¢ R" — R be differentiable function on I° and f , f' € LY(I). Then the proportional
Caputo-hybrid operator may be defined as

¢
pc Dif(t) = (11_a)fo(K1(oc,T)f("c)+K0(a,’c)f’(’c))(t—r)_ad’c

where a € [0,1] and Ko and Ky are functions satisfing

1i151 Ky(a,7) = O0; lin}Ko (,7)=1; Ko(a,7)#0, @ € (0,1];
a—0* a—

lirréKl (a,7) = O lirrll Ki(a,7)=0; Ki(a,7)#0, a€[0,1).
a— a—1-

In this study, let’s redefine the above definition by new defining the Ky and K; functions as follows:

Definition 1.6. Let f : I ¢ R* — R be differentiable function on I° and f, f’ € LY(I). The left-sided and right-sided
proportional Caputo-hybrid operator of order o are defined as follows:

D“f ) = ) f[Kl (,b—1) f(1)+ Ko (o, b—7) f/ (D] (b— 1) ddt

and
b

PC DSf(a) = ﬁf[Kl(a,T—a)f(T)+Ko(a,’r—a)f’(f)](’c—a)_ad’c

where a € [0,1] and Ko (a, 1) = (1 — @)* 1% and Ky (a, t) = a2,

In the following theorem, Hermite-Hadamard type inequality for the proportional Caputo-hybrid op-
erator is proved by Sarikaya in [14] as follows:



M. Z. Sarikaya /TJOS 8 (2), 64-77 67

Theorem 1.7. Let f : I € R* — R be differentiable function on I°, the interior of the interval I, where a, b € I° with
a<band f, f’ be convex functions on 1. Then the following inequalities hold:

4

a? (b —a)® f(a+b) %(1 _ (b_a)l—af/(#) )
rl-ow N .
Y= [ 2Dy f ) + ;°Dif @)]
< 0(2(17 a|:f( f( )}+(1—(x)(b_a)l—“[f,(a)-‘-fl(b)},

The main object of this paper is to present some midpoint type inequalities via proportional Caputo-
hybrid operator using a newly developed generalized an identity, which is rigorously proven. Our findings
not only expand upon previous research but also offer valuable insights and techniques for addressing a
broad range of mathematical and scientific problems.

2. MAIN RESULTS
To prove our other main results, we require the following lemma:

Lemma 2.1. Let f : I ¢ R* — R be differentiable function on I°, the interior of the interval I, where a,b € I° with
a<b,and f', f” € L[a,b]. Then the following identity holds,

F(a, b;a) (4)
_ _ \l-a
- 20 )f(a+b) (1 a)(g a) f,(anrb)
3 I'ia-au

20w L+ DO+ D)

where

F(a, b;a)

1 3
= Ocz(b—a)lm Q-8 f (ta+Q-t)b)dt— | tf' (ta+ (1 —t)b)dt
/ /

LA-a)- a)*™

1
I f (1-£72 4+ A= 0) f7 (ta+ (1 - t) b dt

1

2
1

- f (1-@ =0 +272) f" (ta+ (1 - D b)dt .
0

Proof. By integration by parts, we have

( , 1 a+b 1 %
ftf ((1—t)a+tb)dt=2(b_a)f( > )—b_aff((l—t)a+tb)dt
0

0
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and
1 1
2 2

[rmra-narwa= g (50)- 528 [ @ e
0

a
0

Using the change of the variable, by multiplying the results by “Z(b;‘z)m and (17“)(37”)2% and adding by side
to side we have

1 1

1+a 2—a p
EOD g SO0 (g a6

0 0
& -a)° [(a+b) A-a)yb-a)'" ,(a+b
T T 1 f(2)+ 24 f(z)

a+b

_za;-lW [le-ar @+ a-af@-a' r @] -

Using a similar method, we have

1

l+a 2—a !
_az(b;a) ftf,(m(l_t)b)dt_%f(1_tZ—Za)f"((1_t)a+tb)dt 6)
0 1
a2 (b-a)" [(a+D a1 1 (a+Db
B 1 f( 2 )+(1_0‘)(b_“)1 (1_24—2w)f (T)
b
1

f [ (-0 f(D+A-a) (t-0)* f ()] (r —a)“dr.

ath
2

2-a)

By adding (5) and (6), we obtain that

1 1

l+a ¢ 2-a
Oéz(b;a) ftf,((].—t)ﬂ+tb)dt+ (1—0()(:_51) ft22afu((1_t)a+tb)dt (7)
0 0
1 1
1+a 2-a
- > ) ftf' (ta + (1 — D) b)dt — % f(l —£272) £ (1= t)a + th) dt

0

_ a?(-a)® [(a+b) (A-a)b-a)'" ,(a+b
el e s ey

1
2

b

f [ -0 f(O+A-a) (t-a) f ()] (r—a) " dr.

a

I
2(b-a)™

Using a similar method, we have

1
1+a
”‘Z(Z’%f(t—nf'(u—t)mtb)dt (8)
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1
2-a
_% f(l =072 f7((L - a+ th)dt

_a?(-a)” [(a+b) (A-a)b-a)'" ,(a+b
- T 1 f(2)+ 2420 f(z)
b

2(b a)1 a

and

1
1+a
2D [a-nrwra-opa

1
2—a
O (4 - i

201\
_a (b4 a) f(a-;b) (—a)(b-a)" a(i_2412a)f/(#)

atb
2

L f [2G-0 f(O+ A=) 6-D" f (D] (0-1) " dr.

2(b-a)™ y

By adding (8) and (9), we get

1
1+a
az(b%f(t_nf' (1= t)a+th)dt

1
2—-a
SISO f (L= 7 f7 (1= + th) dt

1
2

1
1+a
+a2(b+a)f(l—t)f’(m+(l—t)b)dt

1
2-a
S = f (1=£72)f" (ta+ (1= )bt

1
2

B az(b—a)“f(a+b)+ (l—a)(b—a)l_“f,(a+b)

2 2 4 2
b

2(b a)1 a

f Q2 (b-1) f @)+ (1-af (b - 0" f (0] 6 - 1" d.

f Q2 (b= )" f (1) + (1= ) (b— )™ f (0] (b - 0" dr.

69

(10)
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Thus, by adding (7) and (10), we get desired equality (4). Note that

1
f(t—l)[f’((l — ) a+th)— f (ta+ (1 - b)]dt

2

1 3
- f(l—t)f’(ta+(1—t)b)dt—ftf’(ta+(1—t)b)dt,
1 0

1

ft[f’((l—t)a+tb)—f’(ta+(1—t)b)]dt
0

1
= f(l—t)f’(ta+(1—t)b)dt—ftf’(ta+(1—t)b)dt,

0
2

% 1
f 2727 (1 = tya + th) dt — f (1= 8> f((1 — t)a + th) dt
0

1
2

1 3
= f (1=t " (ta+ (1 — t) b)dt — f #2727 (ta + (1 - t)b) dt,
1 0

and
1
f (1= 272)[f" (ta+ (1= 1)b) = £ (1 - t)a + th)] dt
1 1
- f (1-£72) £ (ta + (1 - ) b) dt - f (1-@-0>)f (ta+ 1 -Db)dt.
1 0
O

Remark 2.2. In Lemma 2.1,
i) we choose = 1, then the equality (4) becomes the following equality,

b
1 a+b 1
mp(ﬂ,b,'l):f( 2 )—mff(X)dx

1
2

1
= (b—a) f(l—t)f'(ta+(1—t)b)dt—ftf’(ta+(1—t)b)dt

0
2

which is proved by Kirmaci in [8],

70
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ii) we choose a = 0, then the equality (4) becomes the following equality

_ .
F(a,b;0) = (bza)f/(“;b)_f( )2f(a)

1

2 %
[ a-npwara-nod- [ (-£)f @ a-npa
0

1

2

iii) we choose a = %, then the equality (4) becomes the following equality

(b_éla)ép(a’b’é):f(a;b)+f’(#)‘2fb[f(ﬂ+f’(7)]d¢

a

1

1
= 2(b-a) JRl—ﬂﬁUﬂ+ﬂ—ﬂ@db:fﬁ%m+ﬂ—ﬂ@dt.

0

Theorem 2.3. With the assumptations in Lemma 2.1. If
inequality

f'| and

f/l

are convex on [a, b, then we have the following

b —a)(b-a)l™ b
aZ(b_a)af(a; )+(1 a)(z ﬂ) f/(a'; )

(11)
Irl-oa N "
"3 e DO+ Dif @)

f@hqu

< 2 (1, _ \lta
< a“(b-a) ( g

1-a)(b-a) ™1 1 ( 1 )
* 4 2T G\ T (
Proof. We take absolute value of (4) and by using the convexities of
|F (a, b; )

N b\ A-a)y(b-a)™® b
az@_a)f(a; )+( tﬁg a) f(az )

f// (LZ)| +

£ (0)]).

f’| and If”

, we have

ra-ow " "
T l—ate | F°Dgf () + [°Df ()]

1

1 2
a%b—@“”{fkr—of%m+(1—ﬂbﬂw+¥ftv%m+(1—ﬂbﬂﬂ}

0
2

IA

1
1-a)(b-a)*™
T ]‘

£ (ta+ (1 - t)b)|dt

1

2
1

+ f |t2—2a _ (1 _ t)2—2a|

£ (ta+ (1 -t)b)|dt

[T
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1
2

ol

0

£/ (ta + (1 - t)b)|dt + f (1= 1> = 22| (ta+ (1 - 1) b)|dt}
0

1 3
< a-a)'* [f(l—t) [t]f @]+ -p]|F (b)|]dt+ft[t @ +@a-plf (b)|]dt}
L{f[ff fr@|+a-nlf @]
f|t2 200 _ t)Z Za [ f// (ﬂ)| +(1 _ t) ’f// (b)” dt
+ f @ =02 =272t @] + (1= t) |7 (b)”dt}
0
< CYZ (b _ a)1+a (/)‘+]
LA-a@-a™ 1 . ,
R o (1 = | @+ ).
1 1 1
f [1-272 4+ (1 -2t < f tdt + f (72 = (1 = ") e
~ 31 1
T 871 2a (B-2m)2:

1

(1—t)dt+ f [F2 - -] a-pat
. 1
(3 20)(4—-2a) (3 -2a)232"

%
f [1-@ -7+ 221t < f tdt + f [(1 122 p2- Za] 1dt
0 0
1,
8

1
f11 P A -t -pdt <

A
OOIH mi1= € ~

1
(3 2a)(4 2a) (3 -2a)23-2a’

[T

IA

f [1-@ -0+ 221 -t)dt
0

(1—t)dt + [(1 — P2 tZ‘Z“] (1 -1 dt
Jo-a]

72
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3, 1 1
8 4-2a (3-2a)23

This proves the inequality (11).

Remark 2.4. In Theorem 2.3,
i) we choose a = 1, then the inequality (11) becomes the following inequality,

_b-a £ @|+|f o)
-4 2

b
1 a+b 1
m|1:(ﬂ,b;1)|=‘f( > )—mff(x)dx

which is proved by Kirmaci in [8],
ii) we choose a = 0, then the inequality (11) becomes the following inequality

(b-a), (a+b) _fO-f@|_30-a (" @+
> N\ )T 5% 2

4 b
IF(a,b;0)|=’ / ()|]

iii) we choose a = %, then the inequality (11) becomes the following inequality

b

4 1 a+b ,(a+Db ,
b—a) F(ﬂ,b;z)‘zf( 5 )+f(T)—2![f(T)+f(T)]dT
. e-a (@Ol se-a (@] o)
- 4 2 4 2 ’
Theorem 2.5. With the assumptations in Lemma 2.1. If |f’ " and £ T are convex on [a, b] for some fixed q > 1,

then we have the following inequality

_ _ 1l
o5 2 )
—i%ﬁ%ﬁ%ﬁ®+KWﬂm

< w-o—] [3|f'<a>lq+f'<b>bq]3+[f’<a>lq+3|f’<b>1q]*
) (p+ 1) 27 8 8

1-a)(b-a"|1 1 1 v
— 1-—
' 4 L5+(@—2MP+1V( ”}””)l

lfﬂ@%ﬁ%ﬂ*[ﬂwﬁ3ﬂwﬁw
% 5 " 8

1,1
where + + = =1.
P q

Proof. We take absolute value of (4), by using the convexities of | f’| and | f”’| and the well-known Holder’s

inequality, we have

f'land |f”

|F (a,b; )l

R b\ A-a)(b-a)™ b
(Xz(b_ﬂ) f(a; )+( a)(z a) f(a;— )
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M [ECDZf (b) + 5CD3f (ﬂ)]

2 -a)

1

IA

1
2

a? b - a)1+a [ (1-ty dtJ

= [T
s

N1

1
2

s

1
2
1

1

3
+fdt

0

It
+ |(1 _ t)2—2(x _ tZ—Za‘P gt
/
. 1
2 (b _ )1+a ——
: ’ (p+1)r 2" [~[‘

+[f2[t

IA

2

fr@f+a-t

4

1
2—-a
+M i[f[t f//(a)|‘7+(1_t)

1
2

1 1
(- |

fr@f+ a1

1
1 2
+— f[t
2y J

If

+ 1 |t2—2a - t)Z*Za‘p dt r
J ||/

1

2

[t

f%m+a—ﬂwﬁw]

f%m+u—mewJ

[ENE

P / _ q
+[ftdt] Off(ta+(1 t)b)) dt]

Y.

f(ta+ 1 -1)b)| dt]

f(ta+ (1 -1)b)| dt]

1
1
f
0

f(ta+ @1 -1)b)| dt]

f@f+a-1

f%wﬂdﬁ

fr@f+a-o

f%WﬂwJ

o] dt]

f o dt]

1

1

f%Wﬂw]

74
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1
1 2
4
0

= 2(b-a)'* ! [3 : (a)|q+ f (b))q]é +[ / +3}f’ (b)‘q];
(p+1)r 2" ; ;
-0 1 1\
1 [ " ((2 2a)p +1 (1 " 22 )) l

XHaﬂ@W+f%Mj{{fMMMe £ q1
8 8 '

@ +a-p|f o] a

+ ! (1 - )
2-2a)p+1 2(2-2ap

Note that
1
f t2 20 _ t)Z—Za]p dt
1
1 1
< @-2a)p _ (1 — (2-2a)p (1 _ )
- f [t (-1 ]dt 2-2a)p+1 20-2a)p
%
and

f[(l _ t)2—2a _ tZ—Za]p dt
0

IA

( 1 1
1 @20 _ e-2ap] g5 = (1 _ )
f [a-9 20 gt il
0

Here, we use
(A-BY < AP —PBF

for anyA > B > 0 and p > 1. This proves the inequality (12).

Remark 2.6. In Theorem 2.5,
i) we choose a = 1, then the inequality (12) becomes the following inequality,

f(“b) ff(x)dx

b-a |(Br@+lFef) (lFaf+s)roy
(p+1)7 2 8 8
which is proved by Kirmaci in [8],

ii) we choose a = 0, then the inequality (12) becomes the following inequality

(b—a),(a+b\ fO)-f@)
2 I\ 2 2

W |F (a,b;1)|

IA

S —

IF(a,b;0)] =
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—_ 2 i
(b-a) ll + 1 : (1 B %)n
4 2r @1V 27

3

@+l oy (1 @+l o
8 * 8

iii) we choose a = 3, then the inequality (12) becomes the following inequality

_ 4
(b -a)?

b
f(a;b)+f’(a;b)—2f[f(T)+f’(T)]dT
b0 3ﬁmW+wa%+ £ @l +3
(p+1)7 2" 8 8
+(b—a) 1+ 1 (1 1)?

2 2i ey 2

1
F(ﬂ, b, E)‘

£ oy

1 1
3| (a)|‘7 +|f7 (b)lq q . & (a)’q +3|f (b)|q 7
8 8
References
[1] Budak H., Pehlivan E. and Kosem P., On new extensions of Hermite-Hadamard inequalities for generalized fractional integrals, Sahand

[2]
(3]
(4]
[5]
(6]

[7

8

[9

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

Communications in Mathematical Analysis, 18(1), 73-88, (2021).

Baleanu D., Fernandez A. and Akgul A., On a fractional operator combining proportional and classical differintegrals, Mathematics,
2020, 8, 360.

Budak H., Bilisik C.C. and Sarikaya M. Z., On some new extensions of inequalities of Hermite-Hadamard type for generalized fractional
integrals, Sahand Communications in Mathematical Analysis, 19(2), 65-79, (2022).

Dragomir S.S. and Agarwal R.P., Two inequalities for differentiable mappings and applications to special means of real numbers and to
trapezodial formula, Appl. Math. lett., 11(5) (1998), 91-95.

Dragomir S.S.and Pearce C. E. M., Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs,
Victoria University, 2000.

Giirbtiz M., Akdemir A. O. and Dokuyucu M. A., Novel approaches for differentiable convex functions via the proportional Caputo-hybrid
operators, Fractal and Fractional, 6(5), 258, (2022).

Kavurmaci H., Avci M. and Ozdemir M.E., New inequalities of Hermite-Hadamard type for convex functions with applications, J.
Inequalities Appl. 2011, 2011, 86.

Kirmaci U.S., Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math.
Comput. 2004, 147, 137-146.

Kirmaci U. S., Bakula M. K.,Ozdemir M. E. and Pe&ari¢ J., Hadamard-type inequalities for s-convex functions, Applied Mathematics
and Computation, 193(1), 26-35, (2007).

Mitrinovic D. S., Pecaric J. E., and Fink A. M., Inequalities involving functions and their integrals and derivatives, Kluwer
Academic Publishers, Dordrecht, 1994.

Mohammed P. O. and Brevik 1., A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry,
12(4), 610, (2020).

Samko S. G., Kilbas A. A, Marichev O. 1., Fractional Integrals and Derivatives Theory and Application, Gordan and Breach Science,
New York, 1993.

Ogiilmiis H. and Sarikaya M. Z., Some Hermite-Hadamard type inequalities for h-convex functions and their applications, Iranian Journal
of Science and Technology, Transactions A: Science, 44, 813-819, (2020).

Sarikaya M.Z., On Hermite-Hadamard type inequalities for proportional Caputo-hybrid operator, Konuralp Journal of
Mathematics,11(1)(2023)31-39.

Sarikaya M.Z. and Yildirim H., On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Mathemat-
ical Notes, 17(2), 1049-1059, (2016).

Sarikaya M.Z., Set E., Yaldiz H. and Basak N., Hermite-Hadamard'’s inequalities for fractional integrals and related fractional inequalities,
Math. Comput. Model. 57, 2403-2407 (2013).

Sarikaya M.Z., Ertugral E.,, On the generalized Hermite-Hadamard inequalities, Annals of the University of Craiova-Mathematics and
Computer Science Series 47 (2020), no. 1, 193-213.



[18]
[19]
[20]
[21]
[22]
[23]

[24]

M. Z. Sarikaya /T]JOS 8 (2), 64-77 77

Sarikaya M.Z., Budak H., Generalized Hermite-Hadamard type integral inequalities for fractional integrals, Filomat 30 (2016), no. 5,
1315-1326.

Sarikaya M. Z. and Aktan N., On the generalization of some integral inequalities and their applications, Mathematical and computer
Modelling, 54(9-10), 2175-2182, (2011).

Zabandan G., An extension and refinement of Hermite-Hadamard inequality and related results, Int. . Nonlinear Anal. Appl. 11 (2020)
No. 2, 379-390.

Zhang Y., Wang J., On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals, ]. Inequal. Appl. 2013
(2013), Art. number 220.

Wang J., Li X., Feckan M., Zhou Y., Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of
convexity, Appl. Anal. 92 (2012), no. 11, 2241-2253.

Wang J., Li X., Zhu C., Refinements of Hermite-Hadamard type inequalities involving fractional integrals, Bull. Belg. Math. Soc. Simon
Stevin 20 (2013), 655-666.

Wang J., Zhu C. and Zhou Y., New generalized Hermite-Hadamard type inequalities and applications to special means, Journal of
Inequalities and Applications, 2013(1), 1-15, (2013).



