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Fixed Point Properties for Asymptotically Nonexpansive Mappings on
Large Classes of Closed, Bounded and Convex Subsets in α-Duals of

Certain Difference Sequence Spaces

Veysel NEZİRa

aKafkas University, Faculty of Science and Letters, Department of Mathematics, Kars, Turkey

Abstract. In 1970, Cesàro sequence spaces was introduced by Shiue. In 1981, Kızmaz defined difference
sequence spaces for ℓ∞, c0 and c. Then, in 1983, Orhan introduced Cesàro Difference Sequence Spaces. Later,
Et and Tripathy et. al. generalized the space introduced by Orhan. Moreover, in 1989, Çolak obtained new
types of sequence spaces by generalizing Kızmaz’s idea and using Çolak’s structure, Et and Esi, in 2000,
obtained generalized difference sequences. Using Et and Esi’s structure, Ansari and Chaudhry, in 2012,
introduced a new type of generalized difference sequence space. Et and Işık, in 2012, obtained new type of
generalized difference sequence spaces which have equivalent norm to that of Ansari and Chaudhry’s type
Banach spaces. Then, Et and Işık found α-duals of the Banach spaces they got and investigated geometric
properties for them.

In this study, firstly, we recall that in 1979, Goebel and Kuczomow showed that there exist large classes
of closed bounded and convex subsets in ℓ1 with fixed point property for nonexpansive mappings. It is
notable that after Goebel and Kuczumow’s study, Kaczor and Prus wanted to find large classes of closed
bounded and convex subsets with fixed point property for asymptotically nonexpansive mappings; then
indeed they gave positive answer in ℓ1. In this study, we study Kaczor and Prus analogy in the second
and third order α-duals of difference sequence spaces introduced by Et and Işık and show that affine
asypmtotically nonexpansive mappings on large classes of closed, bounded and convex subsets of the
Banach spaces taken have fixed points.

1. Introduction and Preliminaries

When a Banach space satisfies the condition that every invariant nonexpansive mappings defined on any
closed, bounded and convex (cbc) nonemtpy subset has a fixed point, then it is said that the space has the
fixed point property for nonexpansive mappings. We need to note that distances between images of distant
points under nonexpansive mapping cannot exceed the distances between the points taken. Researchers
have considered categorizing Banach spaces with this property.

Firstly, in 1965, Browder [3] shows that Hilbert spaces have the property and the result was generalized
in [19] to reflexive Banach spaces with normal structure.
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Then, researchers have especially investigated nonreflexive classical Banach spaces and wondered if they
can be renormable and falls in the same category with their equivalent norm while they fail to be members
of the category with their usual norm but they were able to detect some nonreflexive Banach spaces which
have equivalent norms and they become to have the fixed point property with those renormings. The first
example was given in 2008 by Lin [20] for ℓ1. Then even it has been asked if the same could have been
done for c0, but the answer still remains open. Since the researchers have considered trying to obtain the
analogous results for well-known other classical nonreflexive Banach spaces, in 2012, another experiment
was done for Lebesgue integrable functions space L1[0, 1] by Hernandes Lineares and Maria [21] but they
were able to obtain the positive answer when they restricted the nonexpansive mappings by assuming they
were affine as well. One can say that there is no doubt most tries have been inspired by the ideas of the study
[16] where in 1979, Goebel and Kuczumow proved that while ℓ1 fails the fixed point property since one can
easily find a cbc nonweakly compact subset there and a fixed point free invariant nonexpansive map, it is
possible to find a very large class subsets in target such that invariant nonexpansive mappings defined on
the members of the class have fixed points. In fact, it is easy to notice the traces of those ideas in Lin’s work
[20]. Even Goebel and Kuczumow’s work has inspired many other researchers to investigate if there exist
more example of nonreflexive Banach spaces with large classes satisfying fixed point property. For example,
Kaczor and Prus [17] wanted to generalize Goebel and Kuczumow’s findings by investigating if the same
could be done for asymptotically nonexpansive mappings. Then, as their result, they proved that under
affinity condition, asymptotically nonexpansive invariant mappings defined on a large class of cbc subsets
in ℓ1 can have fixed points. Moreover, in 2013, Everest [13] extended Kaczor and Prus’s results by finding
larger classes satisfying the fixed point property for affine asymptotically nonexpansive mappings. Thus,
affinity condition become an easiness tool for their works. In fact, as an another well-known nonreflexive
Banach space, Lebesgue space L1[0, 1] was studied in [21] and in their study they obtained an analogous
result to [20] as they showed that L1[0, 1] can be renormed to have the fixed point property for affine
nonexpansive mappings.

In this study we will investigate some Banach spaces analogous to ℓ1. Our aim is to discuss the
analogous results for Köthe-Toeplitz duals of certain generalized difference sequence spaces studied by
Et and Işık [12]. We show that there exists a very large class of cbc subsets in those spaces with fixed
point property for affine asymptotically nonexpansive mappings. Thus, first we will recall the definition of
Cesàro sequence spaces introduced by Shiue [24] in 1970 and next we will give Kızmaz’s construction in [18]
in 1981 for difference sequence spaces since the dual space we work on is obtained from the generalizations
of Kızmaz’s idea which are derived differently by many researchers such as [8–11, 22, 23, 25]. But we need
to note that Et and Esi’s work [11] and the further study by Et and Çolak [10] used the new type of difference
sequence definition from Çolak’s work [8]. Then, using Et and Esi’s structure, Ansari and Chaudhry [1], in
2012, introduced a new type of generalized difference sequence spaces. Changing Ansari and Chaudhry’s
construction slightly, Et and Işık [12], in 2012, obtained new type of generalized difference sequence spaces
which have equivalent norm to that of Ansari and Chaudhry’s type Banach spaces. Then, Et and Işık found
α-duals of the Banach spaces they got and investigated geometric properties for them.

Now, first we recall that Shiue [24], in 1970, introduced the Cesàro sequence spaces written as

cesp =

(xn)n ⊂ R

∣∣∣∣∣∣∣∣
 ∞∑

n=1

1
n

n∑
k=1

|xk|


p

1/p

< ∞


such that ℓp ⊂ cesp and

ces∞ =

x = (xn)n ⊂ R

∣∣∣∣∣∣∣ sup
n

1
n

n∑
k=1

|xk| < ∞


such that ℓ∞ ⊂ ces∞ where 1 ≤ p < ∞. Their topological properties have been investigated and it has been
seen that for 1 < p < ∞, cesp is a seperable reflexive Banach space. Furthermore, many researchers such
as Cui [5] in 1999, Cui, Hudzik, and Li [6] in 2000 and Cui, Meng, and Pluciennik [7] in 2000 were able to
prove that for 1 < p < ∞, Cesàro sequence space cesp has the fixed point property.
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Easiest way to show that was due to both reflexivity by the fact the space has normal structure when
1 < p < ∞ (using the fact via Kirk [19]) and the space having the weak fixed point property because of its
Garcia-Falset coefficient is less than 2 (see for example the result by Falset [14] in 1997). A good reference
about fixed point theory results for Cesàro sequence spaces can be a survey in Chen et. al. [4].

After the introduction of Cesàro sequence spaces, Kızmaz [18], denoting by ℓ∞ (△), c (△) and c0 (△),
introduced difference sequence spaces for ℓ∞, c and c0 where they are the Banach spaces of bounded,
convergent and null sequences, respectively. Here △ represented the difference operator applied to the
sequence x = (xn)n with the rule given by △ x = (xk − xk+1)k. In 1981, Kızmaz [18] studied then Köthe-
Toeplitz Duals and topological properties for them.

As earlier it was stated, Çolak [8] was one of the researchers generalizing Kızmaz’s ideas in [18]. In his
work [8] in 1989, Çolak obtained the generalized version of the difference sequence space in the following
way by picking an arbitrary sequence of nonzero complex values v = (vn)n. The new difference operator is
denoted by △v and a sequence x = (xn)n the difference sequence is written as △vx = (vkxk − vk+1xk+1)k. Then,
in their study [11] in 2000, Et and Esi defined a generalized difference sequence space as below.

△v (ℓ∞) =
{
x = (xn)n ⊂ R

∣∣∣ △vx ∈ ℓ∞
}
,

△v (c) =
{
x = (xn)n ⊂ R

∣∣∣ △vx ∈ c
}
,

△v (c0) =
{
x = (xn)n ⊂ R

∣∣∣ △vx ∈ c0

}
.

Then, they also defined mth order generalized type difference sequence for any m ∈N given by△0
vx = (vkxk)k,

△m
v x =

(
△m

v xk
)

k =
(
△m−1

v xk − △m−1
v xk+1

)
k

with △m
v xk =

m∑
i=0

(−1)i
(

m
i

)
vk+ixk+i for each k ∈N.

In fact, Et and Esi [11] further generalized the above difference sequence spaces and Bektaş, Et and Çolak
[2] in 2004 not only found the Köthe-Toeplitz duals for them but also obtained the duals for the generalized
types of Et and Esi’s. We may recall here that their 2nd order and 3rd order difference sequence spaces have
the following norms respectively:

∥x∥(2)
v = |v1x1| + |v2x2| +

∥∥∥△m
v x
∥∥∥
∞

∥x∥(3)
v = |v1x1| + |v2x2| + |v3x3| +

∥∥∥△m
v x
∥∥∥
∞

Then the corresponding Köthe-Toeplitz duals were obtained as in [2] and [11] such that they are written as
below:

D2
1 B
{
a = (an)n ⊂ R

∣∣∣∣ (n2vn
−1an

)
n
∈ ℓ1
}
=

a = (an)n ⊂ R: ∥a∥(2) =

∞∑
k=1

k2
|ak|

|vk|
< ∞


and

D3
1 B
{
a = (an)n ⊂ R

∣∣∣∣ (n3vn
−1an

)
n
∈ ℓ1
}
=

a = (an)n ⊂ R : ∥a∥(3) =

∞∑
k=1

k3
|ak|

|vk|
< ∞


Note that Dm

1 ⊂ ℓ
1 if km

∣∣∣vk
−1
∣∣∣ > 1 for each k ∈N and ℓ1 ⊂ Dm

1 if km
∣∣∣vk
−1
∣∣∣ < 1 for each k ∈N and m = 2, 3.

Ansari and Chaudhry [1], in 2012, introduced a new type of generalized difference sequence spaces by
picking an arbitrary sequence of nonzero complex values v = (vn)n as Çolak [8] did and next by symbolizing
the new difference sequence space as △m

v,r(E) for arbitrary r ∈ R, m ∈ N and writing that space as below
where X is any of the sequence spaces ℓ∞, c or c0.

△m
v,r (X) =

{
x = (xn)n ⊂ R

∣∣∣ △m
v x ∈ X

}
where Ansari and Chaudhry [1] defined the norm by

∥x∥m△,v =
m∑

k=1

|vkxk| + sup
k∈N

∣∣∣kr△m
v xk

∣∣∣
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Then, by obtaining an equivalent norm to Ansari and Chaudhry’s Banach space, Et and Işık [12] defined
mth order generalized type difference sequence for any m ∈N given by

△(m)
v,r (X) =

{
x = (xn)n ⊂ R

∣∣∣ △m
v x ∈ X

}
where the norm is as follows:

∥x∥(m)
△,v = sup

k∈N

∣∣∣kr△m
v xk

∣∣∣
Then, Et and Işık found α-duals of the Banach spaces they got and investigated geometric properties for

them such that mth order α-duals for their Banach spaces are written as

Um
1 B

{
a = (an)n ⊂ R

∣∣∣∣ (nm−rvn
−1an

)
n
∈ ℓ1
}
=

a = (an)n ⊂ R: ∥a∥(m) =

∞∑
k=1

km−r
|ak|

|vk|
< ∞


In this study, we will consider second and third order α-duals; that is, we study their special cases when
m = 2 and m = 3. Note that Um

1 ⊂ ℓ
1 if km−r

∣∣∣vk
−1
∣∣∣ > 1 for each k ∈ N and ℓ1 ⊂ Um

1 if km−r
∣∣∣vk
−1
∣∣∣ < 1 for each

k ∈N and m = 2, 3.
We will need the below well-known preliminaries before giving our main results. [15] may be suggested

as a good reference for these fundamentals.

Definition 1.1. Consider that (X, ∥ · ∥) is a Banach space and let C be a non-empty cbc subset. Let : C → C be a
mapping. We say that
1. T is an affine mapping if for every t ∈ [0, 1] and a, b ∈ C, T ((1 − t) a + tb) = (1 − t) T (a) + t T (b) .
2. T is a nonexpansive mapping if for every a, b ∈ C, ∥ T(a) − T(b) ∥≤∥ a − b ∥.
3. T is an asymptotically nonexpansive mapping if there exists a sequence of scalars (kn)n∈N decreasingly converging
to 1 such that for every a, b ∈ C, and for every n ∈N, ∥ Tn(a) − Tn(b) ∥≤ kn ∥ a − b ∥.

Then, we will easily obtain an anologous key lemma from the below lemma in the work [16].

Lemma 1.2. Let {un} be a sequence in ℓ1 converging to u in weak-star topology, then for every w ∈ ℓ1,

r (w) = r (u) + ∥w − u∥1

where
r (w) = limsup

n
∥un − w∥1.

Note that our scalar field in this study will be real numbers although Çolak [8] considers complex values
of v = (vn)n while introducing his structer of the difference sequence which is taken as the fundamental
concept in this study.

2. Main Results

In this section, we will present our results. As earlier it has been mentioned in the first section, we
investigate Kaczor and Prus’ analogy for the spaces U2

1 and U3
1. We aim to show that there are large classes

of cbc subsets in these spaces such that every nonexpansive invariant mapping defined on the subsets in
the classes taken has a fixed point. Recall that the invariant mappings have the same domain and the range.

Firstly, due to isometric isomorphism, using Lemma 1.2, we will provide the straight analogous result
as a lemma below which will be a key step as in the works such as [16] and [13] and in fact the methods in
the study [13] will be our lead in this work.
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Lemma 2.1. Let {un} be a sequence in a Banach space Z which is either of the spaces U2
1 or U3

1 such that ∥.∥ denotes
the norm for each space and assume {un} converges to u in weak-star topology, then for every w ∈ Z,

r (w) = r (u) + ∥w − u∥

where
r (w) = limsup

n
∥un − w∥ .

Then we prove the following theorems as our main results.

Theorem 2.2. Fix t ∈ (0, 1). Let ( fn)n∈N be a sequence defined by f1 := t v1 e1, and fn := vn
n2−r en for all integers n ≥ 2

where the sequence (en)n∈N is the canonical basis of both c0 and ℓ1. Then, consider the cbc subset E(2) = Et
(2) of U2

1 by

E(2) :=

 ∞∑
n=1

αn fn : ∀n ∈N, αn ≥ 0 and
∞∑

n=1

αn = 1

 .
Then, E(2) has the fixed point property for affine asymptotically ∥ .∥(2)-nonexpansive mappings.

Proof. Fix t ∈ (0, 1). Let T:E(2)
→E(2) be an affine asymptotically mapping. Then, since T is affine, by Lemma

1.1.2 in [13], there exists a sequence
(
u(n)
)

n∈N
∈E(2) such that

∥∥∥Tu(n)
−u(n)

∥∥∥(2)
→
n

0.Due to isometric isomorphism

U2
1 shares common geometric properties with ℓ1 and so both U2

1 and its predual have the same fixed point
theory facts to ℓ1 and c0, respectly. Thus, considering that on bounded subsets the weak star topology on
ℓ1 is equivalent to the coardinate-wise convergence topology, and c0 is separable, in U2

1, the unit closed ball
is weak*-sequentially compact due to Banach-Alaoglu theorem. Then we can say that we may denote the
weak* closure of the set E(2) by

C(2):=E(2)
w∗
=

 ∞∑
n=1

αn fn: each αn≥0 and
∞∑

n=1

αn≤1


and without loss of generality, we may pass to a subsequence if necessary, and get a weak* limit u∈C(2) of
u(n).

Then, by Lemma 2.1, we have a function r:U2
1→[0,∞) defined by

r (w)= limsup
n

∥∥∥u(n)
−w
∥∥∥(2)
, ∀w∈U2

1

such that for every w ∈ U2
1,

r (w) = r (u)+∥u−w∥(2).

Since T is asymptotically nonexpansive mapping, there exists a decreasing sequence (kn)n∈N∈[1,∞) decreas-
ingly convergent to 1 such that ∀a, b∈U2

1 and ∀n ∈N,

∥Tna−Tnb∥(2)
≤kn ∥a−b∥(2) .

Case 1:u∈E(2).
Fix s ∈N and take k0 = 1. Then, we have r (Tsu) = r (u) + ∥Tsu−u∥(2) and

r (Tsu) = limsup
n

∥∥∥Tsu − u(n)
∥∥∥(2)
≤ limsup

n

∥∥∥∥Tsu − Ts
(
u(n)
)∥∥∥∥(2)
+ limsup

n

∥∥∥∥Ts
(
u(n)
)
− u(n)

∥∥∥∥(2)
(1)

≤ limsup
n

ks

∥∥∥u−u(n)
∥∥∥(2)
+ limsup

n

s∑
j=1

∥∥∥∥T j
(
u(n)
)
− T j−1

(
u(n)
)∥∥∥∥(2)

≤ ks limsup
n

∥∥∥u−u(n)
∥∥∥(2)
+ limsup

n

s∑
j=1

k j−1

∥∥∥∥T (u(n)
)
− u(n)

∥∥∥∥(2)

= ksr (u) .
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Therefore, ∥Tsu−u∥(2)
≤r (u) (ks − 1) and so by taking limit as s → ∞, we have lim

s
∥Tsu−u∥(2) = 0 but then

since lim
s

∥∥∥Ts+1u−Tu
∥∥∥(2)
≤ lim

s
∥Tsu−u∥(2), lim

s

∥∥∥Ts+1u−Tu
∥∥∥(2)
= 0 and so Tsu converges both Tu and u; thus,

Tu = u by the uniqueness of the limits.

Case 2: u∈C(2)
\E(2).

Then, we may find scalars satisfying u =
∞∑

n=1
δn fn such that

∞∑
n=1
δn<1 and δn≥0, ∀n ∈N.

Define ξ:= 1−
∞∑

n=1
δn and next define

h:= (δ1+ξ) f1+
∞∑

n=2

δn fn.

Then, ∥h−u∥(2) = ∥tξe1∥
(2) = tξ.

Now fix w ∈ E(2). Then, we may find scalars satisfying w =
∞∑

n=1
αn fn such that

∞∑
n=1
αn = 1 with αn≥0, ∀n ∈

N. We may also write each fk with coefficients γk for each k ∈ N where γ1 := t v1, and γn := vn
n2−r for all

integers n ≥ 2 such that for each n ∈N, fn = γnen.

Then,

∥w−u∥(2) =

∥∥∥∥∥∥∥
∞∑

k=1

αk fk−
∞∑

k=1

δk fk

∥∥∥∥∥∥∥
(2)

=

∥∥∥∥∥∥∥
∞∑

k=1

αk fk−
∞∑

k=1

δk fk

∥∥∥∥∥∥∥
(2)

=

∥∥∥∥∥∥∥
∞∑

k=1

(αk−δk) fk

∥∥∥∥∥∥∥
(2)

=

∞∑
k=1

∣∣∣∣∣∣(αk−δk)
k2−r fk

vk

∣∣∣∣∣∣ = ∞∑
k=1

|αk−δk|

≥

∣∣∣∣∣∣∣
∞∑

k=1

(αk−δk)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣1 −
∞∑

k=1

δk

∣∣∣∣∣∣∣
= ξ.

Hence,

∥w−u∥(2)
≥tξ= ∥h−u∥(2) .
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Next, we have the following.

r (h) = r (u) + ∥h−u∥(2)
≤r (u) + ∥Tsh−u∥(2) = r (Tsh) but this follows

= limsup
n

∥∥∥Tsh−u(n)
∥∥∥(2)

then similarly to the inequality (1)

≤ limsup
n

∥∥∥∥Tsh−Ts
(
u(n)
)∥∥∥∥(2)
+ limsup

n

∥∥∥∥u(n)
−Ts
(
u(n)
)∥∥∥∥(2)

≤ ks limsup
n

∥∥∥h−u(n)
∥∥∥(2)
+ limsup

n

s∑
j=1

∥∥∥∥T j
(
u(n)
)
− T j−1

(
u(n)
)∥∥∥∥(2)

≤ ks limsup
n

∥∥∥h−u(n)
∥∥∥(2)
+ limsup

n

s∑
j=1

k j−1

∥∥∥∥T (u(n)
)
− u(n)

∥∥∥∥(2)

≤ ks limsup
n

∥∥∥h−u(n)
∥∥∥(2)
+0

= ksr (h) .

Hence, r (h)≤r (Tsh)≤ksr (h) ; thus, by taking limit as s→∞, we have lim
s

r (Tsh) = r (h) ; that is,

lim
s

r (u) + ∥Tsh−u∥(2) = lim
s

r (u) + ∥h−u∥(2) which means lim
s
∥Tsh−u∥(2) = ∥h−u∥(2) . (2)

Moreover, for any w ∈ E(2),

∥w−h∥(2) =

∥∥∥∥∥∥∥
∞∑

k=1

αk fk− (δ1+ξ) f1−
∞∑

n=2

δn fn

∥∥∥∥∥∥∥
(2)

=

∥∥∥∥∥∥∥
∞∑

k=2

(αk−δk) fk + (α1−δ1 − ξ) f1

∥∥∥∥∥∥∥
(2)

≤

∥∥∥∥∥∥∥
∞∑

k=2

(αk−δk) fk

∥∥∥∥∥∥∥
(2)

+
∥∥∥(α1−δ1 − ξ) f1

∥∥∥(2)
=

∞∑
k=2

∣∣∣∣∣∣(αk−δk)
k2−r fk

vk

∣∣∣∣∣∣ +
∣∣∣∣∣(α1−δ1 − ξ)

f1
v1

∣∣∣∣∣
≤

∞∑
k=2

|αk−δk| + t |α1−δ1 − ξ| =
∞∑

k=2

|αk−δk| + t

∣∣∣∣∣∣∣α1+

∞∑
k=2

αk−

∞∑
k=2

αk−δ1 − 1 +
∞∑

k=1

δk

∣∣∣∣∣∣∣
=

∞∑
k=2

|αk−δk| + t

∣∣∣∣∣∣∣
∞∑

k=2

δk−

∞∑
k=2

αk

∣∣∣∣∣∣∣
≤

∞∑
k=2

|αk−δk|+t
∞∑

k=2

|αk−δk|= (1 + t)
∞∑

k=2

|αk−δk|=
1+t
1−t

(1 − t)
∞∑

k=2

|αk−δk|

=
1+t
1−t

tξ−tξ+ (1 − t)
∞∑

k=2

|αk−δk|

=1+t
1−t

t (1− (1−ξ))−tξ+ (1 − t)
∞∑

k=2

|αk−δk|


=

1+t
1−t

t (1− (1−ξ))+ (1 − t)
∞∑

k=2

|αk−δk| −tξ


=

1+t
1−t

t
 ∞∑

k=1

αk−

∞∑
k=1

δk

+ (1 − t)
∞∑

k=2

|αk−δk| −tξ


≤

1+t
1−t

t ∞∑
k=1

|αk−δk|+ (1 − t)
∞∑

k=2

|αk−δk| −tξ

 .
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Hence,

∥w−h∥(2)
≤

1+t
1−t

t |α1−δ1| +

∞∑
k=2

|αk−δk| −tξ

=1+t
1−t

[
∥w−u∥(2)

− ∥h−u∥(2)
]
.

Now, fix ε> 0 and recall that t ∈ (0, 1) .Then, we can choose Γ (ε) := 1−t
1+tε ∈ (0,∞) such that for any w=

∞∑
k=1
αk fk ∈

E(2), ∣∣∣∥w−u∥(2)
− ∥h−u∥(2)

∣∣∣≤ ∥w−u∥(2)
− ∥h−u∥(2) <Γ.

Then, ∥w−h∥(2) < 1+t
1−tΓ=ε.

Therefore, for every ε> 0, there exists Γ=Γ (ε) such that if
∣∣∣∥w−u∥(2)

− ∥h−u∥(2)
∣∣∣ <Γ then ∥w−h∥(2) <ε so

this implies for any sequence (ϑn)n in E(2) with lim
n
∥ϑn−u∥(2) = ∥h−u∥(2) implies lim

n
∥ϑn−h∥(2) = 0. But then

since from (2) we have lim
s
∥Tsh−u∥(2) = ∥h−u∥(2), we get lim

s
∥Tsh−h∥(2) = 0.

Furthermore,

∥h−Th∥(2)
≤ lim

s
∥Tsh−h∥(2) + lim

s
∥Tsh−Th∥(2)

≤k1 lim
s

∥∥∥Ts−1h−h
∥∥∥(2)
= 0

Hence, Th=h and so E(2) has the fixed point property for asymptotically nonexpansive mappings as de-
sired.

Theorem 2.3. Fix t ∈ (0, 1). Let ( fn)n∈N be a sequence defined by f1 := t v1 e1, and fn := vn
n3−r en for all integers n ≥ 2

where the sequence (en)n∈N is the canonical basis of both c0 and ℓ1. Then, consider the cbc subset E(3) = Et
(3) of U3

1 by

E(3) :=

 ∞∑
n=1

αn fn : ∀n ∈N, αn ≥ 0 and
∞∑

n=1

αn = 1

 .
Then, E(3) has the fixed point property for asymptotically ∥ .∥(3)-nonexpansive mappings.

Proof. Fix t ∈ (0, 1). Let T:E(3)
→E(3) be an affine asymptotically mapping. Then, since T is affine, by Lemma

1.1.2 in [13], there exists a sequence
(
u(n)
)

n∈N
∈E(3) such that

∥∥∥Tu(n)
−u(n)

∥∥∥(3)
→
n

0.Due to isometric isomorphism

U3
1 shares common geometric properties with ℓ1 and so both U3

1 and its predual have the same fixed point
theory facts to ℓ1 and c0, respectly. Thus, considering that on bounded subsets the weak star topology on
ℓ1 is equivalent to the coardinate-wise convergence topology, and c0 is separable, in U3

1, the unit closed ball
is weak*-sequentially compact due to Banach-Alaoglu theorem. Then we can say that we may denote the
weak* closure of the set E(3) by

C(3):=E(3)
w∗
=

 ∞∑
n=1

αn fn: each αn≥0 and
∞∑

n=1

αn≤1


and without loss of generality, we may pass to a subsequence if necessary, and get a weak* limit u∈C(3) of
u(n).

Then, by Lemma 2.1, we have a function r:U3
1→[0,∞) defined by

r (w)= limsup
n

∥∥∥u(n)
−w
∥∥∥(3)
, ∀w∈U3

1

such that for every w ∈ U3
1,

r (w) = r (u)+∥u−w∥(3).
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Since T is asymptotically nonexpansive mapping, there exists a decreasing sequence (kn)n∈N∈[1,∞) decreas-
ingly convergent to 1 such that ∀a, b∈U3

1 and ∀n ∈N,

∥Tna−Tnb∥(3)
≤kn ∥a−b∥(3) .

Case 1:u∈E(3).
Fix s ∈N and take k0 = 1. Then, we have r (Tsu) = r (u) + ∥Tsu−u∥(3) and

r (Tsu) = limsup
n

∥∥∥Tsu − u(n)
∥∥∥(3)
≤ limsup

n

∥∥∥∥Tsu − Ts
(
u(n)
)∥∥∥∥(3)
+ limsup

n

∥∥∥∥Ts
(
u(n)
)
− u(n)

∥∥∥∥(3)
(3)

≤ limsup
n

ks

∥∥∥u−u(n)
∥∥∥(3)
+ limsup

n

s∑
j=1

∥∥∥∥T j
(
u(n)
)
− T j−1

(
u(n)
)∥∥∥∥(3)

≤ ks limsup
n

∥∥∥u−u(n)
∥∥∥(3)
+ limsup

n

s∑
j=1

k j−1

∥∥∥∥T (u(n)
)
− u(n)

∥∥∥∥(3)

= ksr (u) .

Therefore, ∥Tsu−u∥(3)
≤r (u) (ks − 1) and so by taking limit as s → ∞, we have lim

s
∥Tsu−u∥(3) = 0 but then

since lim
s

∥∥∥Ts+1u−Tu
∥∥∥(3)
≤ lim

s
∥Tsu−u∥(3), lim

s

∥∥∥Ts+1u−Tu
∥∥∥(3)
= 0 and so Tsu converges both Tu and u; thus,

Tu = u by the uniqueness of the limits.
Case 2: u∈C(3)

\E(3).

Then, we may find scalars satisfying u =
∞∑

n=1
δn fn such that

∞∑
n=1
δn<1 and δn≥0, ∀n ∈N.

Define ξ:= 1−
∞∑

n=1
δn and next define

h:= (δ1+ξ) f1+
∞∑

n=2

δn fn.

Then, ∥h−u∥(3) = ∥tξe1∥
(3) = tξ.

Now fix w ∈ E(3). Then, we may find scalars satisfying w =
∞∑

n=1
αn fn such that

∞∑
n=1
αn = 1 with αn≥0, ∀n ∈

N.
Then,

∥w−u∥(3) =

∥∥∥∥∥∥∥
∞∑

k=1

αk fk−
∞∑

k=1

δk fk

∥∥∥∥∥∥∥
(3)

=

∥∥∥∥∥∥∥
∞∑

k=1

αk fk−
∞∑

k=1

δk fk

∥∥∥∥∥∥∥
(3)

=

∥∥∥∥∥∥∥
∞∑

k=1

(αk−δk) fk

∥∥∥∥∥∥∥
(3)

=

∞∑
k=1

∣∣∣∣∣∣(αk−δk)
k3−r fk

vk

∣∣∣∣∣∣ = ∞∑
k=1

|αk−δk|

≥

∣∣∣∣∣∣∣
∞∑

k=1

(αk−δk)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣1 −
∞∑

k=1

δk

∣∣∣∣∣∣∣
= ξ.
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Hence,
∥w−u∥(3)

≥tξ= ∥h−u∥(3) .

Next, we have the following.

r (h) = r (u) + ∥h−u∥(3)
≤r (u) + ∥Tsh−u∥(3) = r (Tsh) but this follows

= limsup
n

∥∥∥Tsh−u(n)
∥∥∥(3)

then similarly to the inequality (3)

≤ limsup
n

∥∥∥∥Tsh−Ts
(
u(n)
)∥∥∥∥(3)
+ limsup

n

∥∥∥∥u(n)
−Ts
(
u(n)
)∥∥∥∥(3)

≤ ks limsup
n

∥∥∥h−u(n)
∥∥∥(3)
+ limsup

n

s∑
j=1

∥∥∥∥T j
(
u(n)
)
− T j−1

(
u(n)
)∥∥∥∥(3)

≤ ks limsup
n

∥∥∥h−u(n)
∥∥∥(3)
+ limsup

n

s∑
j=1

k j−1

∥∥∥∥T (u(n)
)
− u(n)

∥∥∥∥(3)

≤ ks limsup
n

∥∥∥h−u(n)
∥∥∥(3)
+0

= ksr (h) .

Hence, r (h)≤r (Tsh)≤ksr (h) ; thus, by taking limit as s→∞, we have lim
s

r (Tsh) = r (h) ; that is,

lim
s

r (u) + ∥Tsh−u∥(3) = lim
s

r (u) + ∥h−u∥(3) which means lim
s
∥Tsh−u∥(3) = ∥h−u∥(3) . (4)

Moreover, for any w ∈ E(3),

∥w−h∥(3) =

∥∥∥∥∥∥∥
∞∑

k=1

αk fk− (δ1+ξ) f1−
∞∑

n=2

δn fn

∥∥∥∥∥∥∥
(3)

=

∥∥∥∥∥∥∥
∞∑

k=2

(αk−δk) fk + (α1−δ1 − ξ) f1

∥∥∥∥∥∥∥
(3)

≤

∥∥∥∥∥∥∥
∞∑

k=2

(αk−δk) fk

∥∥∥∥∥∥∥
(3)

+
∥∥∥(α1−δ1 − ξ) f1

∥∥∥(3)
=

∞∑
k=2

∣∣∣∣∣∣(αk−δk)
k3−r fk

vk

∣∣∣∣∣∣ +
∣∣∣∣∣(α1−δ1 − ξ)

f1
v1

∣∣∣∣∣
≤

∞∑
k=2

|αk−δk| + t |α1−δ1 − ξ| =
∞∑

k=2

|αk−δk| + t

∣∣∣∣∣∣∣α1+

∞∑
k=2

αk−

∞∑
k=2

αk−δ1 − 1 +
∞∑

k=1

δk

∣∣∣∣∣∣∣
=

∞∑
k=2

|αk−δk| + t

∣∣∣∣∣∣∣
∞∑

k=2

δk−

∞∑
k=2

αk

∣∣∣∣∣∣∣
≤

∞∑
k=2

|αk−δk|+t
∞∑

k=2

|αk−δk|= (1 + t)
∞∑

k=2

|αk−δk|=
1+t
1−t

(1 − t)
∞∑

k=2

|αk−δk|

=
1+t
1−t

tξ−tξ+ (1 − t)
∞∑

k=2

|αk−δk|

=1+t
1−t

t (1− (1−ξ))−tξ+ (1 − t)
∞∑

k=2

|αk−δk|


=

1+t
1−t

t (1− (1−ξ))+ (1 − t)
∞∑

k=2

|αk−δk| −tξ


=

1+t
1−t

t
 ∞∑

k=1

αk−

∞∑
k=1

δk

+ (1 − t)
∞∑

k=2

|αk−δk| −tξ


≤

1+t
1−t

t ∞∑
k=1

|αk−δk|+ (1 − t)
∞∑

k=2

|αk−δk| −tξ

 .
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Hence,

∥w−h∥(3)
≤

1+t
1−t

t |α1−δ1| +

∞∑
k=2

|αk−δk| −tξ

=1+t
1−t

[
∥w−u∥(3)

− ∥h−u∥(3)
]
.

Now, fix ε> 0 and recall that t ∈ (0, 1) .Then, we can choose Γ (ε) := 1−t
1+tε ∈ (0,∞) such that for any w=

∞∑
k=1
αk fk ∈

E(3), ∣∣∣∥w−u∥(3)
− ∥h−u∥(3)

∣∣∣≤ ∥w−u∥(3)
− ∥h−u∥(3) <Γ.

Then, ∥w−h∥(3) < 1+t
1−tΓ=ε.

Therefore, for every ε> 0, there exists Γ=Γ (ε) such that if
∣∣∣∥w−u∥(3)

− ∥h−u∥(3)
∣∣∣ <Γ then ∥w−h∥(3) <ε so

this implies for any sequence (ϑn)n in E(3) with lim
n
∥ϑn−u∥(3) = ∥h−u∥(3) implies lim

n
∥ϑn−h∥(3) = 0. But then

since from (4) we have lim
s
∥Tsh−u∥(3) = ∥h−u∥(3), we get lim

s
∥Tsh−h∥(3) = 0.

Furthermore,

∥h−Th∥(3)
≤ lim

s
∥Tsh−h∥(3) + lim

s
∥Tsh−Th∥(3)

≤k1 lim
s

∥∥∥Ts−1h−h
∥∥∥(3)
= 0

Hence, Th=h and so E(3) has the fixed point property for asymptotically nonexpansive mappings as de-
sired.
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[8] Çolak, R. (1989). On some generalized sequence spaces. Communications Faculty of Sciences University of Ankara Series A1

Mathematics and Statistics, 38: 35-46.
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