
1. Introduction

Throughout this work, we consider q ∈ (0, 1). The q-number is defined to be the
number of the form

[α]q =
q
α − 1

q − 1
, for any α ∈ C.

In particular, if α = n ∈ N, then the positive q-integer is defined to be

[n]q =
qn − 1

q − 1
= 1 + q + q2 + · · · qn−1.

In special case, we have [1]q = 1 and [0]q = 1
1−q = [∞]q.

We define the q-factorial of the number [n]q and the g-binomial coefficient by

[0]q! = 1, [n]q! = [n]q [n− 1]q · · · [2]q · [1]q

[
n
j

]
q

=
[n]q!

[j]q! [n− j]q!

with the convention that [
0
0

]
q

= 1,

[
0
j

]
q

= 0, ∀j ≥ 1.

The q-Pochammer symbol is defined to be

(x− a)
n
q =

n−1∏
j=0

(
x− qja

)
, with (x− a)

(0)
q = 1, and (x− a)

−n
q =

1

(x− q−na)
n
q

.

This formula plays an important role in combinatorics. For instance, for x = 1 and x = a
this formula make sense as n =∞:

(1 + x)
n
q =

∞∏
j=0

(
1 + qjx

)
.

The above infinite product converges if q ∈ (0,∞).
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We adopt the symbol

(1 + x)
α
q =

(1 + x)
∞
q

(1 + qαx)
∞
q

for any number α. Clearly, this definition coincides with definition of (1 + x)
n
q when

α = n ∈ N.

Lemma 1. [2] For any two numbers α and β, we have

(1 + x)
α
q =

(1 + x)
α+β
q

(1 + qαx)
β
q

and

Dq (1 + x)
α
q = [α]q (1 + qx)

α−1
q .

The q-derivative of any real valued function f is defined to be

Dqf (x) =
f (qx)− f (x)

(q − 1)x
, x 6= 0.

Clearly, as q → 1− then Dqf (x) tends to f ′(x), provided that f is differentiable.
Two fundamentals q-binomial formulas are well know in Literature. The q-Gauss

binomial which has the form

(1 + x)
n
q =

n∑
j=0

[
n
j

]
q

qj(j−1)/2xj

and the q-Heine’s binomial formula

1

(1− x)
n
q

=

∞∑
j=0

[
n
j

]
q

xj .

However, since

lim
n→∞

[
n
j

]
q

=
1

(1− q) (1− q2) . . . (1− qj)

Applying this for q-Gauss and q-Heine’s binomial formulas, we get two formal power
series in x. Namely, we have

(1 + x)
∞
q =

∞∑
j=0

qj(j−1)/2
xj

(1− q) (1− q2) . . . (1− qj)
,(1.1)

and

1

(1− x)
∞
q

=

∞∑
j=0

xj

(1− q) (1− q2) . . . (1− qj)
.(1.2)

These two series are very useful in the theory of q-calculus, since they were used to define
the q-analogue of exponential function. From (1.2)

1

(1− x)
∞
q

=

n∑
j=0

(
x

1−q

)j
(

1−q
1−q

)(
1−q2
1−q

)
· · ·
(

1−qj
1−q

) =

n∑
j=0

(
x

1−q

)j
[1]1 [2]q · · · [j]q

=

n∑
j=0

(
x

1−q

)j
[j]q!

= e
x

1−q
q ,
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or we write

exq =
1

(1− (1− q)x)
∞
q

.

Similarly, if we use (1.1) the companion q-exponential function is defined to be

(1 + x)
∞
q =

n∑
j=0

qj(j−1)/2
(

x
1−q

)j
(

1−q
1−q

)(
1−q2
1−q

)
· · ·
(

1−qj
1−q

) =

n∑
j=0

qj(j−1)/2
(

x
1−q

)j
[1]1 [2]q · · · [j]q

=

n∑
j=0

(
x

1−q

)j
[j]q!

= E
x

1−q
q

or we write

Exq = (1 + (1− q)x)
∞
q .

The derivatives of the above two q-exponential functions are given as

DqE
x
q = Eqxq , Dqe

x
q = exq

We note that the additive property of the exponentials does not hold in general, i.e.,

exq eyq = ex+yq .

However, if x and y satisfy the commutation relation yx = qxy, then the additive prop-
erty holds.

The two functions Exq and exq are connected to each other by the relations

E−xq exq = 1, ex1/q = Exq .

Naturally, it is important to know the relation between these q-quantities. One of
the most effective method is to use inequalities. Among others, one of the most famous
and applicable inequalities used in mathematics is the Bernoulli inequality, which is well
known as:

(1 + x)
n ≥ 1 + nx(1.3)

for every x > −1 and every positive integer n ≥ 1. This was extended to more general
form such as [3]:

(1 + x)
α ≥ 1 + αx, α ≥ 1(1.4)

and

(1 + x)
α ≤ 1 + αx, 0 < α < 1.(1.5)

This inequality has important applications in proving some classical theorems in Anal-
ysis and Statistics. Due to its important role, in this work we prove the q-analogue of
Bernoulli inequality and give some other related inequalities.

2. q-Bernoulli inequality

Let us begin with the following version of q-Bernoulli inequality for integers.

Theorem 1. Let q ∈ (0, 1). If x > −1 then the q-Bernoulli inequality

(1 + x)
n
q ≥ 1 + [n]q x,(2.1)

is valid for every positive integer n ≥ 1.
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Proof. Our proof carries by Induction. Define the statement

P (n) : (1 + x)
n
q ≥ 1 + [n]q x.(2.2)

Case I: If x = 0, then the we get equality for all n and thus (2.1) holds.

Case II: If −1 < x < 0. Let x = −y, 0 < y < 1, so that (2.2) becomes

P (n) : (1− y)
n
q ≥ 1 + [n]q y.

For n = 1, we have

P (1) : (1− y)
1
q = (1− y) ≥ 1− y = 1− [1]q y.

Assume P (n) holds for n = k, i.e.,

P (k) : (1− y)
k
q ≥ 1− [k]q y is true.

We need to show that

P (k + 1) : (1 + y)
k+1
q ≥ 1− [k + 1]q y

is true?.

(1− y)
k+1
q = (1− y)

k
q

(
1− qky

)
≥
(

1− [k]q y
) (

1− qky
)

(follows by assumption (2.2) for n = k)

= 1− qky − [k]q y + qk [k]q y
2

≥ 1− qky − [k]q y

≥ 1− y − [k]q y (since 0 > −qk > −1)

= 1−
(

1 + [k]q

)
y

≥ 1− [k + 1]q y (since ([k + 1]q = q [k]q + 1 ≤ [k]q + 1)

which means the statement P (k + 1) is true and thus by Mathematical Induction hy-
pothesis the inequality in (2.1) holds for every n ∈ N and −1 < x < 0.

Case III: If x > 0. Then,

P (1) : (1 + x)
1
q = (1 + x) ≥ 1 + x = 1 + [1]q x

Assume (2.2) holds for n = k, i.e.,

P (k) : (1 + x)
k
q ≥ 1 + [k]q x is true.

We need to show that

P (k + 1) : (1 + x)
k+1
q ≥ 1 + [k + 1]q x

is true?.
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Starting with the left-hand side

(1 + x)
k+1
q = (1 + x)

k
q

(
1 + qkx

)
≥
(

1 + [k]q x
) (

1 + qkx
)

(follows by assumption (2.2) for n = k)

= 1 + [k]q x+ qkx+ qk [k]q x
2

≥ 1 +
1

q
q [k]q x+

q

q
qkx

= 1 +
1

q

(
[k + 1]q − 1

)
x+

1

q

(
qk+1x

)
(since [k + 1]q = q [k]q + 1)

= 1 +
1

q

(
[k + 1]q + qk+1 − 1

)
x

= 1 +
1

q

(
[k + 1]q + (q − 1) [k + 1]q

)
x (since qk+1 − 1 = (q − 1) [k + 1]q)

= 1 + [k + 1]q x,

which means the statement P (k + 1) is true and thus by Mathematical Induction hy-
pothesis the inequality in (2.1) holds for every n ∈ N and x > 0. Combining all above
three cases I, II and III the inequality (2.1) holds for all n ≥ 1 and all x > −1. �

Remark 1. As q → 1 in (2.1), then the q-Bernoulli inequality (2.1) reduces to the
original version of Bernoulli inequality (1.3) for integer case.

Remark 2. For the case −1 < x < 0, we prefer to write (2.1) in the form

(1− y)
n
q ≥ 1− [n]q y

for every 0 < y < 1 and n ≥ 1.

Corollary 1. Let q ∈ (0, 1). If x > −1, then the generalization q-Bernoulli inequality

(1 + x)
m+n
q ≥

(
1 + [m]q x

)
(1 + qmx)

n
q ,

is valid for every m ∈ N and n ∈ Z.

Proof. The result is an immediate consequence of Theorem 1, by substituting (1 + x)
m
q =

(1+x)m+n
q

(1+qmx)nq
in (2.1). So that the result follows for every m ∈ N and n ∈ Z. �

The following generalization of (2.1) is valid for any real number α ≥ 0.

Theorem 2. Let q ∈ (0, 1). If x ≥ 0 then the q-Bernoulli inequality

(1 + x)
α
q ≥ 1 + [α]q x, α ≥ 1(2.3)

and

(1 + x)
α
q ≤ 1 + [α]q x, 0 < α < 1(2.4)

is valid.

Proof. Let us recall that [1], for 0 < a < b (or 0 > a > b), a function f(x) is said
to be q-increasing (respectively, q-decreasing) on [a, b], if f(qx) ≤ f(x) (respectively,
f(qx) ≥ f(x)) whenever, x ∈ [a, b] and qx ∈ [a, b]. As a direct consequence we have,
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f(x) is q-increasing (respectively, q-decreasing) on [a, b] iff Dqf(x) ≥ 0 (respectively,
Dqf(x) ≤ 0), whenever, x ∈ [a, b] and qx ∈ [a, b].

Let f (x) = (1 + x)
α
q − [α]q x − 1, x ≥ 0. Since (1 + x)

α
q =

(1+x)∞q
(1+qαx)∞q

, inserting qx

instead of x and replace α by α− 1 we get (1 + qx)
α−1
q =

(1+qx)∞q
(1+qαx)∞q

. Therefore, we have

Dqf (x) = [α]q (1 + qx)
α−1
q − [α]q

= [α]q
(1 + qx)

∞
q

(1 + qαx)
∞
q

− [α]q

= [α]q

∞∑
j=0

qj(j−1)/2

j∏
k=1

(1−qk)
qjxj

∞∑
j=0

qj(j−1)/2

j∏
k=1

(1−qk)
qjαxj

− [α]q (with the convention

0∏
k=1

(
1− qj

)
= 1)

= [α]q

1 +
∞∑
j=1

qj(j−1)/2

j∏
k=1

(1−qk)
qjxj

1 +
∞∑
j=1

qj(j−1)/2

j∏
k=1

(1−qk)
qjαxj

− [α]q

= [α]q

∞∑
j=1

qj(j−1)/2

j∏
k=1

(1−qk)

(
qj − qjα

)
xj

1 +
∞∑
j=1

qj(j−1)/2

j∏
k=1

(1−qk)
qj(α−1)xj

≥ 0,

since q ∈ (0, 1) and α ≥ 1 then
(
qj − qjα

)
> 0, and this implies that Dqf (x) ≥ 0 for all

x ≥ 0, which means that f is q-increasing and thus the inequality (2.3) is proved.
The inequality (2.4) is deduced from the above proof by noting that

(
qj − qjα

)
< 0

for all 0 < α < 1. �

Remark 3. Setting α = n ∈ N in (2.3), then the inequality (2.3) reduces to the q-version
of Bernoulli inequality (2.1) for integer case but for x ≥ 0. Moreover, as q → 1 (2.3)
and (2.4) reduces to the classical versions (1.4) and (1.5); respectively.

Testing the validity of (2.3) and (2.4) for −1 < x < 0 arbitrarily, we find that these
inequalities can be extended but with additional restriction on q ∈ (0, 1), as given in the
following result.

Theorem 3. There exists q̂ ∈ (0, 1) such that the inequalities (2.3) and (2.4) are hold
for every q ∈ (q̂, 1) and every x > −1.

Proof. Firstly, we need to recall the q-Mean Value Theorem (q-MVT) given in [4], it
states that: For a continuous function g defined on [a, b] (0 < a < b), there exist
η ∈ (a, b) and q̂ ∈ (0, 1) such that

g (b)− g (a) = Dqg (η) (b− a)(2.5)
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for all q ∈ (q̂, 1).

Case I. If x ≥ 0. We consider the function f (t) = (1 + t)
α
q defined for t ≥ 0. Clearly f

is continuous for t ∈ [0, x] ⊂ [0,∞), and Dqf (c) = [α]q (1 + qc)
α−1
q . Applying, (2.5) for

a = 0 and b = x then there exist η ∈ (a, b) and q̂ ∈ (0, 1)

(1 + x)
α
q − 1 = [α]q (1 + qη)

α−1
q (x− 0) ≥ [α]q x ∀q ∈ (q̂, 1) .

This yields that

(1 + x)
α
q ≥ 1 + [α]q x

∀q ∈ (q̂, 1), and this proves (2.3).

Case II. If −1 < x < 0. Let us write (2.3) as follows:

1− [α]q x ≤ (1− x)
α
q .(2.6)

Consider the function f (t) = (1− t)αq defined for 0 ≤ t ≤ 1. Clearly f is continuous for

t ∈ [0, x] ⊂ [0, 1], and Dqf (c) = [α]q (1 + qc)
α−1
q . Applying, (2.5) for a = 0 and b = x

then there exist η ∈ (0, x) and q̂ ∈ (0, 1)

(1− x)
α
q − 1 = − [α]q (1− qη)

α−1
q (x− 0) ≥ − [α]q x ∀q ∈ (q̂, 1) .(2.7)

This yields that

(1− x)
α
q ≥ 1− [α]q x

∀q ∈ (q̂, 1) with −1 < x < 0, and this proves the inequality. The reverse inequality in
(2.6) holds since the inequality in (2.7) is reversed for 0 < α < 1, which proves (2.4) �

A generalization of (2.3) and (2.4) is given as follows:

Proposition 1. Let β ∈ R. There exists q̂ ∈ (0, 1) such that for every x > −1 the
inequalities

(1 + x)
α+β
q ≥

(
1 + [α]q x

)
(1 + qαx)

β
q α ≥ 1(2.8)

and

(1 + x)
α+β
q ≤

(
1 + [α]q x

)
(1 + qαx)

β
q 0 < α ≤ 1(2.9)

are hold for every q ∈ (q̂, 1).

Proof. From Lemma 1 we have (1 + x)
α
q =

(1+x)α+β
q

(1+qαx)βq
. Substituting in (2.3) we get the

required result. �

Remark 4. Setting β = 0 in (2.8) and (2.9) we recapture (2.3) and (2.4), respectively.

Corollary 2. Let β ∈ R. There exists q̂ ∈ (0, 1) such that for every x > −1 the
inequalities

(1 + x)
∞
q ≥

(
1 + [α]q x

)
(1 + qαx)

β
q

(
1 + qα+βx

)∞
q

α ≥ 1(2.10)

and

(1 + x)
∞
q ≤

(
1 + [α]q x

)
(1 + qαx)

β
q

(
1 + qα+βx

)∞
q

0 < α ≤ 1(2.11)
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are hold for every q ∈ (q̂, 1)

Proof. Substituting (1 + x)
α+β
q =

(1+x)∞q
(1+qα+βx)∞q

in (2.8) and (2.9); respectively, we get the

required result. �

Remark 5. Replacing ‘(1− q)x’ instead of ‘x’ in (2.10) and (2.11), we get inequalities
for the exponential function Ex for all x > −1

1−q . Similarly, for ex wit a bit changes in

the substitution.

Corollary 3. There exists q̂ ∈ (0, 1) such that for every x > −1 the inequalities

(1 + x)
∞
q ≥

(
1 + [α]q x

)
(1 + qαx)

∞
q α ≥ 1(2.12)

and

(1 + x)
∞
q ≤

(
1 + [α]q x

)
(1 + qαx)

∞
q 0 < α ≤ 1(2.13)

are hold for every q ∈ (q̂, 1)

Proof. Setting β = 0 in (2.10) and (2.11); respectively, we get the required result. �
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