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aDepartment of Mathematics, Erzurum Technical University
Erzurum, Turkey

Abstract. In this paper, we examine the solution of a Diophantine equation involving two integer se-
quences. More specifically, we find all repdigits (i.e., numbers with only one repeating digit in the decimal
expansion) that can be written as a product of Pell number and a Narayana number. Our approach to
solving this problem is to combine Baker theory with the theory of continued fractions.

1. Introduction

Diophantine equations involving recurrence sequences have been studied for a long time. One of the
most interesting of these equations is the equations involving repdigits.

A repdigit (short for “repeated digit”) T is a natural number composed of repeated instances of the same
digit in its decimal expansion. That is, T is of the form

x ·
(

10t
− 1

9

)
for some positive integers x, t with t ≥ 1 and 1 ≤ x ≤ 9.

Some of the most recent papers related to this concepts are [3–6]. In this note, we use Pell and Narayana
sequences in our main result.

Pell sequence, one of the most familiar binary recurrence sequence, is defined by P0 = 0, P1 = 1 and
Pn = 2Pn−1+Pn−2. Some of the terms of the Pell sequence are given by 0, 1, 2, 5, 12, 29, 70, . . . . Its characteristic
polynomial is of the form x2

−2x−1 = 0 whose roots are ν = 1+
√

2 (the silver ratio) and η = 1−
√

2. Binet’s
formula enables us to rewrite the Pell sequence by using the roots α and β as

Pn =
νn
− ηn

2
√

2
. (1)

Also, it is known that
νn−2

≤ Pn ≤ ν
n−1 (2)

and
Pn =

νn

2
√

2
+ λ (3)
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Cited this article as: Çağman, A. (2023). On Repdigits as Product of Pell and Narayana Numbers, Turkish Journal of Science, 8(3),

102-106.
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where |λ| ≤ 1/
(
2
√

2
)
.

The characteristic polynomial of Narayana sequence {Nn}(n≥0) is:

φ (x) = x3
− x2

− 1.

and the characteristic roots are:

α := 1/3
(

3
√

1/2
(
29 − 3

√

93
)
+

3
√

1/2
(
3
√

93 + 29
)
+ 1

)
, (4)

β := 1/3 − 1/6
(
1 − i

√

3
)

3
√

1/2
(
29 − 3

√

93
)
− 1/6

(
1 + i

√

3
)

3
√

1/2
(
3
√

93 + 29
)
, (5)

γ := 1/3 − 1/6
(
1 + i

√

3
)

3
√

1/2
(
29 − 3

√

93
)
− 1/6

(
1 − i

√

3
)

3
√

1/2
(
3
√

93 + 29
)
. (6)

Then, Binet-like formula for Narayana numbers is

Nn := aαn + bβn + cγn (7)

It can be obtain that

a :=
α2

α3 + 2
, b :=

β2

β3 + 2
, and c :=

γ2

γ3 + 2
(8)

and the minimal polynomial of a over integers is 31x3
− 3x − 1.

Also,

Nn = aαn + θ (9)

where θ < 1/αn+2 for all n > 1. We also have the following property.

Theorem 1.1. Let {Nn}n≥0 be the Narayana sequence. Then,

αn−2
≤ Nn ≤ α

n−1 (10)

for n ≥ 1.

It is easy to see that α ∈ {1.46, 1.47},
∣∣∣β∣∣∣ = ∣∣∣γ∣∣∣ ∈ {0.82, 0.83}, a ∈ {0.61, 0.62} and |b| = |c| ∈ {0.57, 0.58}

In this study, our main result is the following:

Theorem 1.2. The only positive integer triples (n, t, x) with 1 ≤ x ≤ 9 satisfying the Diophantine equation

NnPn = x ·
(

10t
− 1

9

)
(11)

as follows:
(n, t, x) ∈ {(1, 1, 1) , (2, 1, 2) , (3, 1, 5)} .

2. Preliminaries

Before proceeding with the proof of our main result, let us give some necessary information for proof.
We give the definition of the logarithmic height of an algebraic number and its some properties.

Definition 2.1. Let z be an algebraic number of degree d with minimal polynomial

a0xd + a1xd−1 + · · · + ad = a0 ·

d∏
i=1

(x − zi)



A. Çağman / TJOS 8 (3), 102–106 104

where ai’s are relatively prime integers with a0 > 0 and zi’s are conjugates of z. Then

h (z) =
1
d

log a0 +

d∑
i=1

log (max {|zi| , 1})


is called the logarithmic height of z. The following proposition gives some properties of logarithmic height that can
be found in [7].

Proposition 2.2. Let z, z1, z2, . . . , zt be elements of an algebraic closure of Q and m ∈ Z. Then

1. h (z1 · · · zt) ≤
∑t

i=1 h (zi)
2. h (z1 + · · · + zt) ≤ log t +

∑t
i=1 h (zi)

3. h (zm)=|m| h (z) .

We will use the following theorem (see [1] or Theorem 9.4 in [8]) and lemma (see [9] which is a variation of
the result due to [2] ) for proving our results.

Theorem 2.3. Let z1, z2, . . . , zs be nonzero elements of a real algebraic number field F of degree D, b1, b2, . . . , bs
rational integers. Set

B := max{|b1| , . . . , |bs|}

and
Λ := zb1

1 . . . z
bs
s − 1.

If Λ is nonzero, then

log |Λ| > −3 · 30s+4
· (s + 1)5.5

·D2
· (1 + log D) · (1 + log(sB)) · A1 · · ·As

where
Ai ≥ max{D · h(zi),

∣∣∣log zi

∣∣∣ , 0.16}

for all 1 ≤ i ≤ s. If F = R, then

log |Λ| > −1.4 · 30s+3
· s4.5

·D2
· (1 + log D) · (1 + log B) · A1 · · ·As.

Lemma 2.4. Let A, B, µ be some real numbers with A > 0 and B > 1 and let γ be an irrational number and M be a
positive integer. Take p/q as a convergent of the continued fraction of γ such that q > 6M. Set ε :=

∥∥∥µq
∥∥∥−M

∥∥∥γq
∥∥∥ > 0

where ∥·∥ denotes the distance from the nearest integer. Then, there is no solution to the inequality

0 <
∣∣∣uγ − v + µ

∣∣∣ < AB−w

in positive integers u, v and w with

u ≤M and w ≥
log Aq

ε

log B
.

3. The Proof of Theorem 1.2

Let us write Equations (3) and (9) in Equation (11). We get

(aαn + θ)
(
νn

2
√

2
+ λ

)
= x ·

(
10t
− 1

9

)
.

After some manipulations using |θ| < 1/2 and |λ| ≤ 1/
(
2
√

2
)
, we have∣∣∣∣∣∣a (αν)n

2
√

2
−

x · 10t

9

∣∣∣∣∣∣ < 1.35 · αn.
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To convert this inequality into form in Theorem 2.3, let us divide both sides by a(αν)n

2
√

2
. So, we have∣∣∣∣1 − 10t

· (αν)−n
·

((
x · 2
√

2
)
/ (9a)

)∣∣∣∣ < 6.26 · ν−n. (12)

Set
Γ := 10t

· (αν)−n
·

((
x · 2
√

2
)
/ (9a)

)
− 1.

It can be easily obtain that Γ , 0.
Now, we are in the position to apply Theorem 2.3 to the inequality (12). Set

(m1,m2,m3) =
(
10, αν,

(
x · 2
√

2
)
/ (9a)

)
and (c1, c2, c3) = (t,−n, 1) .

Since Q (m1,m2,m3) = Q (α, ν), we know that D ≤ 6. So, we can take

14 = A1 ≥ 6 · h (10) = 6 · log(10) ∼ 13.82
3.5 = A2 ≥ 6 · h (αν) < 6 ·

(
log (α) /3 + log (ν) /2

)
∼ 3.4

44 = A3 ≥ 6 · h
(
x · 2
√

2/ (9a)
)
≤ 6

(
h (x) + h

(
2
√

2
)
+ h (9) + h (a)

)
< 43.92.

Now, let us try to find the value of B. From the inequalities (2) and (10), we can write

αn−1
· νn−1

≥ NnPn = x ·
(
10t
− 1

)
/9 > 10t−1

and this inequality implies that
1.81t − 0.82 < n. (13)

Since t < 1.81t − 0.82 for t > 1, we can write t < n from the inequality (13). Thus, we can take

B := n.

So, due to the Theorem 2.3 we have

|Γ| > exp
(
−C ·

(
1 + logn

)
· 14 · 3.5 · 44

)
where C := 1.4 · 306

· 34.5
· 62
·
(
1 + log6

)
. From the inequality (12), we get

6.26
νn > exp

(
−C ·

(
1 + logn

)
· 14 · 3.5 · 44

)
.

Taking logarithm of both sides of the above inequality and considering C < 1.44 · 1013 and 1+ logn < 2logn
for n ≥ 3, we get

n < 2.53 · 1017. (14)

We get
t < 1.4 · 1017. (15)

by the inequality (13).
Now, let us improve the bounds (14) and (15). Set

Ψ := tlog10 − nlog (αν) + log
((

x · 2
√

2
)
/ (9a)

)
.

So, we can rewrite the inequality (12) as ∣∣∣1 − eΨ
∣∣∣ < 6.26
νn .

IfΨ > 0, then
Ψ < eΨ − 1 < 6.26 · ν−n.
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Otherwise, i.e.,Ψ < 0, then we get
|Ψ| < 6.26 · ν−n+1. (16)

Now, supposeΨ > 0 (for the caseΨ < 0 operations are similar). From the inequality (16), we obtain

0 < tlog10 − nlog (αν) + log
((

x · 2
√

2
)
/ (9a)

)
< 6.26 · ν−(n−1).

Dividing both sides of the above inequality by log (αν), we obtain

0 < t ·
log10

log (αν)
− n +

log
((

x · 2
√

2
)
/ (9a)

)
log (αν)

< 19.45 · φ−(n−1).

In here, γ := log10/log (αν) is an irrational number. Hence, we can apply the Lemma 2.4 to the above
inequality with the parameters

µ :=
log

((
x · 2
√

2
)
/ (9a)

)
log (αν)

, A := 19.45, B := ν and w := n − 1.

We can choose M := 1.4 · 1017 from the bound (15). So, 43th convergence of γ is satisfies the condition
q > 6M. From this convergent, we get the smallest ε as 0.113535. Thus, we have

log (19.45 · 1314312833617044573/0.113535)
logφ

∼ 53.17 ≤ n − 1

and so, we get n < 55. Considering this bound on n, we obtain t < 31 from the inequality (13). Thus, in
Mathematica, the solutions of the equation (11) as follows:

{(1, 1, 1) , (2, 1, 2) , (3, 1, 5)} .

This completes the proof.
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