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Abstract. Some novel estimations for Chebyshev type inequalities have been presented via generalized
proportional fractional integral operators for integrable functions. The results are more general estimations
by using the expansion of exponential function.

1. Introduction

Integral inequalities, a branch of mathematical analysis, play a crucial role in extending the princi-
ples of classical inequalities to functions involving integrals. These inequalities offer powerful tools for
analyzing and bounding the behavior of integral expressions, providing insights into the properties of func-
tions and their relationships. Their importance extends across various mathematical disciplines, making
them indispensable in fields such as analysis, differential equations, optimization, and applied mathe-
matics. Integral inequalities involve the study of relationships between integrals of functions and their
corresponding bounds. They provide a framework for comparing the size of integrals and offer valu-
able information about the behavior of functions over intervals. Some well-known integral inequalities
include the Cauchy-Schwarz inequality, Chebyshev inequality, Griiss inequality, Holder’s inequality, and
Minkowski’s inequality, each serving specific purposes in mathematical analysis. Integral inequalities have
practical significance in numerical analysis, where they are employed in the development and analysis
of numerical methods. They help establish error estimates and convergence rates, guiding the design of
efficient algorithms for approximating solutions to mathematical problems.

We will start with the expression of an inequality that has come to the fore with its applications and is the
subject of many articles. Chebyshev inequality was given by Cebysev in [12] as follows.
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where W, ® : [k, k1] — R are absolutely continuous functions whose derivatives W', @’ € L, [k7, k1] and

K2

1
L [owa| @

K1

T(\I/,CD)=K21K1f\I/(x)CD(x)dx— K21K1f\;[/(x)clx
K1 K1

which is called the Chebyshev functional, provided the integrals in (2) exist. With the help of this famous
functional, numerous new integral inequalities have been proved and several variants of Chebyshev’s
inequality have been established. Various generalizations, refinements and extensions can be found in
[12]-[27].

Fractional calculus, a branch of mathematical analysis that extends the traditional concepts of differentiation
and integration to non-integer orders, has gained increasing importance in various scientific and engineering
disciplines. Initially introduced in the 17th century by mathematicians like Leibniz and Euler, fractional
calculus has evolved into a powerful tool with applications in physics, engineering, biology, finance,
and more. Its unique ability to capture non-local and memory-dependent phenomena makes it a crucial
framework for understanding complex systems. Classical calculus deals with integer-order derivatives and
integrals, representing the rate of change and accumulation of quantities, respectively. In fractional calculus,
these operations are extended to non-integer orders, introducing fractional derivatives and integrals. The
fractional derivative of a function describes its rate of change with respect to a non-integer order, providing
a deeper insight into intricate behaviors that classical calculus may overlook. The importance of fractional
calculus lies in its ability to bridge the gap between classical calculus and the real-world complexities
of dynamic systems. As technology advances and our understanding of intricate phenomena deepens,
fractional calculus continues to find new applications and challenges. Researchers are exploring its potential
in artificial intelligence, machine learning, and data science, highlighting its adaptability to diverse domains.
For various results and properties of fractional integral and derivative operators, we refer the papers [1]-
[11] for interested readers. Due to the intensive work on it, the Riemann-Liouville integral operator is a
prominent operator and is defined as follows.

Definition 1.1. (See [1]) Let W € Ly[xy, x1]. The Riemann-Liouville integrals Ji W and ]}, _W of order a > 0 with
K1 = 0 are defined by

t
Jo L P(t) = ﬁ f (t—x) " "W(x)dx, t>1

and 1 o
T YH) = — x—t"‘_l\l’xdx, t<x

respectively. Here I'(t) is the Gamma function and its definition is I'(t) = fom e~ Ydx. It is to be noted that
0 W(t) =] _W(t) = VU(t) in the case of a = 1, the fractional integral reduces to the classical integral.

K1+ Ko—

We will continue with the generalized proportional fractional integral operator, which has been de-
scribed recently and has been the main source of motivation for many studies in the literature with its
use in many areas, especially inequality theory. In [5], Jarad et al. identified the proportional generalized
fractional integrals that satisfy many important features as follows:

Definition 1.2. The left and right generalized proportional fractional integral operators are respectively defined by
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where A € (0,1] and @ € C and R(a) > 0.
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In [17], Belarbi and Dahmani established following theorems related to the Chebyshev inequalities
involving Riemann-Liouville fractional integral operator.

Theorem 1.3. (See [17]) Let W and @ be two synchronous functions on [0, 00). Then for all t > 0, a > 0, we have:

T(oz +1)

JH (WD) =2 ——J"W(5)]D(1). €)

Theorem 1.4. (See [17]) Let Y and @ be two synchronous functions on [0, 00). Then forallt >0, a >0, >0, we
have:

JPv)(h) + JHPO)(E) > [ (D)D) + [P ()] (). (4)

th
rg+1)

n be n positive increasing functions on [0, o0). Then for any t > 0, a > 0, we

F(a +1)

Theorem 1.5. (See [17]) Let (W;)i=1
have

.....

]Ot

H v, ] = (1)~ H JEWi(h). (5)

i=1

Theorem 1.6. (See[17]) Let \V and @ be two functions defined on [0, 00), such that \V is increasing, @ is differentiable
and there exist a real number m := inf;»o O(t)’. Then the inequality
—1lj o Mt (43 a
JEPDR)(E) = (1) WO D(E) ~ ~ 1) YO +m] (W () (6)
is valid forall t >0, a > 0.

The following Theorems have been proved by Set et al. and they include some new inequalities of
Chebyshev type via conformable and generalized fractional integral operators.

Theorem 1.7. (See [24]) Let Y and ® be two integrable functions which are synchronous on [0, oo). Then
T 043
R L)
MerDar S YOO+
> (FIW)@)(IO)) + (I (FIP)() )

T ((JYO)(x)

where a, 3,7 > 0 and I is Euler Gamma function.

Theorem 1.8. (See [26]) Let t be a positive function on [0, co] and let W and @ be two differentiable functions on
[0,00]. If W’ € L,([0, o0]), @ € Ls([0,0]), ¥ > 1, 1 +st =1, then forallx >0,a >0,>0,A>0,0 >0, we
have
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The main purpose of this paper is to establish several Chebyshev type inequalities by using the gen-
eralized proportional fractional integral operators. The results have been performed by a different way
comparing to the previous studies via using the expansion of exponential function in Taylor sense.



S.I. Butt, A.O. Akdemir, E. Giil, M. Nadeem and A. Yalgin /TJOS 8 (3), 114-123 117

2. Main Results

Theorem 2.1. Let W, ® : [0, 00) — R be two integrable functions which are synchronous on [0, o). For a, § > 0,
0 < p1 <1, then one has the following inequality:

r(a) Z ky! (Kza_ f }()1 XGPE 991 (W) (105) 2EPF %P1 (15) +C7F %P1 (1) o)
where . e 1 §
r(Of) Z kl a+k piT (a) le 0 (1 — )" du
and a; = £ ;1

Proof. Since W and @ are synchronous functions on [0, o), it can be written

(W) -V@)(@Wu)-®@©)=20, uvel0 ) (10)
or equivalently,
Yu)®w)+WV@)0@w) >V w)d@+W(@wdu). 11
If we product both sides of (11) by o r(“)fz N i k) (a — )71 it yields
1 %(Kz—u) el 1 %(Kz—u) el
pll"(a)e (o — )" W (1) D (u) + plr(a)e (ko —u)*" W (v) D (v)
1 %(Kz—u) el pl (KZ u) _ el
> plF(a)e (ko —u)" W (u)D(v) + ol (a)e (ko =) W (0)D(u).

Integrating both sides of the above equality with respect to u over [k, k1], we get

1 (12—u) _ a1

T er (ko — )" W (1) D (u)du

1 1 er—u o

+W (0) @ (0) T@ #2716y — u)* ' du
K2 -1
——(x2—u) a-1

> O(v e Ko — U W (u)d

()plm)f (k2 — )" W )
2 ’71 1
\\/J a-1 1) )
) s [ 1 e w)
Leta; = p;
e _ Y @k —w)"
' 7
= k1!
1 sz eth(Kz—u) (K B u)’J‘*l P 1 i i (Kz — Kl)tHkl
peT (@) J,, 2 PT@ k!l a+k
We can conclude that
GPF a,p (Kz —x1)""
1991 (PD) (1) + W (0) D (0) ar " Z PR (12)

> OOV (1) + W () [ (D ><1<2>.
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If we proceed a similar argument, by multiplying the above inequality by “r(a)efil (270 (1¢, —9)*! and

integrating with respect to v over [«», k1], we obtain

(k2 — Kl)a *h

GPF a,p1
) a) Z Rl a+thk

(k2 — 1)**H

0() k1 a+ kl

F(a)f 0270 (10, — )W (0) D (0) do

\%

CPE[P (W) (¢ 2) )fe i 270 () — ) LD (v) do

+SPE[P (@) (kc2) Mfe i 270 (16, — )W (o) d.

By computing the above integrals, one can see that

k k
all (12 — Kl)a+ ! ~.GPF

1 o0
S (WO 2 L
K1 ( )(K2) p{fl—v (a) kl:o kl! a+ kl —K1

[P (i) +S7F 1971 D (i) .

Which completes the proof. [

Remark 2.2. Similar calculations as above shows that for any ¥, ® which synchronous functions on [0, o), one can
obtain

GPFIz;Pl (\I]cD) (Kl ar ( ) kl (KZa_f}()l >GPF Izzpl \\Yj (Kl) +GPF Iz;mq) (Kl) )

Theorem 2.3. Let W, ® : [0, 00) — R be two integrable functions which are synchronous on [0, o) . For all a, > 0,
0<p1 £1,0 < py <1, one has the following inequality:

(o]

k
1 ) (i — 1)

,31" (0() 0= k! ‘8 + ko

(KZ_Kl) «GPF [B,p2
a)Zkl e P () ()

XTI (W) (i) (13)

> ffFI"'Pl W (1) 12 (1c5) +5PF [%91 (1) OFF IFP2W (1)
where
o — 1)k -
F(a Z:'kl(Kzac f:}cl T(Oé)f O ez =), = plpl -
and
Ly Z_?!(Kz —f}{)“”{z - f #1470 (1, — 0 Vo, @y = P2
Pl (@ ket Pk P57 (@) p2
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Proof. We will start by multiplying both sides of (12) by %e‘”(“z’v) (i; —v)* ", then we can write

ST (W) (12) X 2027 (1 — 0)"!

p§F (@)

Kl)a+k1 1
X
al" @) Z kl a+k pf;r (@)

0279 (1, — )1 W (0) D (0)

> ,(flp FIOPW (1,) x 20270 (3, — v)“‘1 D (v)
p,T (@)
1
HPTIP D (162) X 2097 (1, = )T W (o).
pyT (@)

Integrating both sides of the above equality with respect to v over [k, k1], we get the desired result. [J

Remark 2.4. If we set

)a+k1 _ 1 )a+k2

o ka
9 (k2 — 1

Z (Kz — K1 _
F () k! a+k pf;r (@) & k! B+ky

then one can obtain the inequality (9).

Theorem 2.5. Let W; : [0,00) — IR be positive increasing and integrable functions on [0, o) fori = 1,2, ..., n. For
a>0,0 < p; <1, then one has the following inequality:

i=1

n-1
(K —K ) a,P1 - . - PNy,
F(a) Z k! Za +}<1 l X {Slppl . (H W’] (KZ)} 2 LZl (Slppl I (K2))} (14)

_ -
Pl'

where a1 =

Proof. To prove this inequality, we will use induction on n € IN. For n = 1, it is obvious that the inequality
(14) holds such as

ST (1) 2 (I (i2)), Ve > 0.

By using the induction hypothesis, we can assume that

n—1 00 k a+k
K —K
Sf’FI““(I | v ](Kz) [ § —kl 2a+}31 H (2w, (Kz))],

i=1

where Yo, k7 > 0.
Since W; : [0,00) — R are positive increasing and integrable functions on [0, ) for i = 1,2,...,n, then
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n-1 n-1
(H \I/,-) (x2) is an increasing function. Therefore, we can apply inequality (9) for [[ W; = ®, ¥, = ¥, we get
. i=1

n—-1

n-1
SlpFIa,pl [H \I]i] (k2) > [H (SlpFIa,pl \{li\lf,,) (Kz)} ZEIPF 1P (WD) (k7)
i=1

i=1

ok atk 71

1 (k2 — K1) GPF GPF

—_— X %P1 [Py

[pi‘r (@) H k! a+hk K1 (2),; (k2)
=

1 24 (- k)™ n=1 GPF ap apm
* [p‘fl" (@) k1! a+k } H [ (Kz)) P,
=

co ki atk T n
1 a; (ko — x !
[ 71 ( 2 1) l (SlPFIa,pl\yi (KZ)) .

This completes the proof. [J

Theorem 2.6. Let W, ® : [0,00) — R be two integrable functions on [0, oo) such that WV is increasing and @ is
differentiable with m = inficjo ) @ (t) . Then one has the following inequality:

CPE P (W) ()

-1
N Z (K2 )a+k1 «GPF [a,pipy (12) 4+GPE 1 (i)
- F () kq! Kl “

m

a+k1

- ( o ElPF J A (Kz)k(,;lpF 1P (1c0) + mglPFla,m (V) (x2)
Ko—K1

“'T(a) Z‘lﬁ =0 k1 a+ky
where t (x) = x.

Proof. Suppose that p (x) = mx and h (x) = @ (x) —p (x) . Note that & is differentiable and increasing on [0, o),
then we can apply (9) as

SPEI%P (Wh) (1c2) (15)
-1
1 o 4 (i — kp)* 0 o GPF GPF
> [P (1) +CPF [%P1p
- [p‘l"l" (@) kZ:(‘) k! a+lk " (e2) +, (12)

a1
k
P } XGPE [P (1) +SPF 1P h (ko)

-1

1 v & o —x)™™ GPF GPE

- 27 MU | GPF papny [P .

[p‘ff (@) & k1! a+ki “ (1c2) g "I (x2)
=

Since,
SlPFIa,plp (Kz) — mSIPFIa’Plt (KZ)

and
SPI (Wp) (c2) = mEPFI#" (E9) (i2)
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Then, the inequality (15) implies,

GPF [4P1 (WD) (x,)
— GPFIoz p1 (\I/h) (Kz) +GPF [P (\I/p) (x2)

(Kz — k)"
F (0() k1 a+ k1

v

XA I ()l 1P ()

) _
_[ 1 v o (—x)™™

_0k1! O(+k1

XSPFIPW (16 )GPF %P (ic3) + XEPFIVPW (i) T 11 (W) (ic2)

1 v 4 (o —x)™ GPF a,p GPF qa,p
[ o kze)kl'Tkl K1 I 1\11(7{) 1P (x2)
=

B m k ;(ipF [P\ (K )GPF [Pt (KZ) + mGPFIa P1 (t\y) (Kz)
(1<2 —11)*

"‘F(a) Zk] =0 k1 a+k;

which is the desired result. [

Theorem 2.7. Let W, ® : [0,00) — R be two integrable functions on [0, c0) such that WV and © are differentiable
with my = infiejo o) W' () and my = infiejg o) @ (t) . Then one has the following inequality:

ST (00) )

(Kz ~ 1<1)
F (0() k1 a+ k1

\%

XTIV (1) +T 1P D (1)

_ GPF )&z pl\y(K )GPF Iaplt(K )

(,\2 K1 )a+k1
“l"(oc) Z‘kl =0 kl a+k;
ml GPF GPF
- T PG I ()
Ko—1x1)* 1
"I’(a) Zkl =0 kl a+k;
m1m2
+ ( o GPF [oP1E (K )GPF [Pt (K )
K2—K1

‘*F(a) Zkl =0 k1 a+ky
+niy XGPF [P (t\lj) (Kz) + mq XGPF IR (tq)) (Kz) mimy XGPF R tz (Kz)

where t (x) = x.

Proof. Assume that p; (x) = mix, by (x) = @ (x) — p1 (x) and pa (x) = max, hy (x) = D (x) — p2 (x) . Since hy, hy are
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differentiable and increasing on [0, o), then we can apply (9) such that

SFFI“'W (h1hy) (ic2) (16)

v

I"(a

) at+k; |7
1 (k2 — K1) GPF 1a, GPF 1a,
Z_‘k_ SIS 1y () T 1 ()

sl Ué+k1 -

1 11 (k2 — k1)
F (0() k! a+k

[\

% (GPFIa Py (Kz) +GPF [%P1p; (Kz)) (SlPFImPl(D (1c2) +1§1PF *P1p, (K2))
) -1

(o8]

1 4y (1 — 12)"™
piT (a) o k! a+k

[\

XSPE [P (160) P 1P ()

mz
- XEPF TP (1), F 1Pt (1))
Z (Kz 1 )a+k1
4'I‘(a k1=0 k] a+k;

m
- v XCPF [0 (1) CFF 1P £ (1)
Z (’\2 Kl)a”\l
"F(a k=0 kl LY+k1
mim
+ 1 k2 XS]PF [Pt (KZ)S1PP 1Pt (x5) .
y o L (k)™M
“‘F(a k=0 k1 a+k,

Moreover,

I () (i2) = g X 1P (thy) (ic2)

= my XSIPF IR (t\y) (Kz) — miniy XSIPF R tz (Kz) . (17)
Similarly, we have

SRR (hapy) (02) = iy XEPE 1P (thy) (ko)

mq Xk(,;lPF I (tq)) (Kz) minio XGPF P tz (Kz)

and

GPF 7o, GPF a,p1 42
GPE a1 P2 (

(p1p2) (x2) = mymy X, K2).

By using the fact that,
YO = (hy + p1) (ha + p2) = hihy + hipa + hapr + p1p2.
Then, we can obtain
OPFI01 (WD) (1)
= SPFIP (o) (12) +SPF 11 (hap2) (ic2)
+IPFIP (hopy) (1) +S7F 1P (prp2) (2) -

By taking into account this equality together with (16) and (17), we conclude the desired result. [

3. Conclusion

Fractional calculus has evolved from a historical curiosity to a fundamental tool in modern mathematics
and science. Its applications across various disciplines emphasize its significance in providing more accurate
and comprehensive models for complex systems. As research in this field progresses, fractional calculus is
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likely to play an increasingly vital role in advancing our understanding of the intricate dynamics inherent
in the natural and engineered world. Several researchers have studied on Chebyshev functional in the
literature by different motivations. The main purpose of these studies is to obtain optimal bounds and
approaches by using concepts of fractional calculus. To provide new and more general bounds and
estimations, we have used generalized proportional fractional integral operators for integrable functions.
Our findings have been improved by using the expansion of exponential functions in Taylor sense.
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