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Abstract. In this study, using the concepts of I-convergence and rough convergence, we introduced the
notion of rough I-convergence and giving example investigated the relation between I-convergence and
rough I-convergence in 2-normed space. Also, we defined the set of rough I-limit points of a sequence in
2-normed space and obtained two rough I-convergence criteria associated with this set in 2-normed space.
Then, we proved that this set is closed and convex in 2-normed space. Also, we examined the relations
between the set of I-cluster points and the set of rough I-limit points of a sequence in 2-normed space.

1. Introduction and Background

Throughout the paper, N denotes the set of all positive integers and R the set of all real numbers.
The concept of convergence of a sequence of real numbers has been extended to statistical convergence
independently by Fast [15] and Schoenberg [36]. The idea of I-convergence was introduced by Kostyrko et
al. [28] as a generalization of statistical convergence which is based on the structure of the ideal I of subset
ofN.

The concept of 2-normed spaces was initially introduced by Gähler [16, 17] in the 1960’s. Since then,
this concept has been studied by many authors. Gürdal and Pehlivan [21] studied statistical convergence,
statistical Cauchy sequence and investigated some properties of statistical convergence in 2-normed spaces.
Gürdal and Açık [23] investigated I-Cauchy and I∗-Cauchy sequences in 2-normed spaces. Sarabadan and
Talebi [34] studied statistical convergence and ideal convergence of sequences of functions in 2-normed
spaces. Arslan and Dündar [2, 3] investigated the concepts of I-convergence, I∗-convergence, I-Cauchy
and I∗-Cauchy sequences of functions in 2-normed spaces. Futhermore, a lot of development have been
made in this area (see [9, 22, 30, 35, 37–39]).

The idea of rough convergence was first introduced by Phu [31] in finite-dimensional normed spaces. In
[31], he showed that the set LIMrx is bounded, closed, and convex; and he introduced the notion of rough
Cauchy sequence. He also investigated the relations between rough convergence and other convergence
types and the dependence of LIMrx on the roughness degree r. In another paper [32] related to this subject,
he defined the rough continuity of linear operators and showed that every linear operator f : X → Y is r
-continuous at every point x ∈ X under the assumption dimY < ∞ and r > 0 where X and Y are normed
spaces. In [33], he extended the results given in [31] to infinite-dimensional normed spaces. Aytar [7]
studied of rough statistical convergence and defined the set of rough statistical limit points of a sequence
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and obtained two statistical convergence criteria associated with this set and prove that this set is closed
and convex. Also, Aytar [8] studied that the r-limit set of the sequence is equal to the intersection of these
sets and that r-core of the sequence is equal to the union of these sets. Recently, Dündar and Çakan [11–13]
introduced the notion of roughI-convergence and the set of roughI-limit points of a sequence and studied
the notions of rough convergence, I2-convergence and the sets of rough limit points and rough I2-limit
points of a double sequence. Arslan and Dündar [4, 5] introduced rough convergence and investigated some
properties in 2-normed spaces. Also, Arslan and Dündar [6] investigated rough statistical convergence.

In this paper, using the concepts of I-convergence and rough convergence, we introduced the notion of
rough I-convergence and the set of rough I-limit points of a sequence in 2-normed space and obtained two
rough I-convergence criteria associated with this set. Then, we proved that this set is closed and convex in
2-normed space. Also, we examined the relations between the set of I-cluster points and the set of rough
I-limit points of a sequence in 2-normed space. We note that our results and proof techniques presented
in this paper are analogues of those in Phu’s [31] paper. Namely, the actual origin of most of these results
and proof techniques is them papers. The following our theorems and results are the extension of theorems
and results in [4, 5, 31].

Now, we recall the some fundamental definitions and notations about the our issue. (See [1–4, 6–
8, 10, 14, 18–29, 31–34, 38–42]).

Throughout the paper, let r be a nonnegative real number and Rn denotes the real n-dimensional space
with the norm ∥.∥. Consider a sequence x = (xn) ⊂ Rn.

The sequence x = (xn) is said to be r-convergent to L, denoted by xn
r
−→ L provided that ∀ε > 0 ∃nε ∈

N : n ≥ nε ⇒ ∥xn − L∥ < r + ε.
The set LIMrx = {L ∈ Rn : xn

r
−→ L} is called the r-limit set of the sequence x = (xn). A sequence x = (xn)

is said to be r-convergent if LIMrx , ∅. In this case, r is called the convergence degree of the sequence
x = (xn). For r = 0, we get the ordinary convergence.

Let K be a subset of the set of positive integersN, and let us denote the set {k ∈ K : k ≤ n} by Kn. Then
the natural density of K is given by

δ(K) = lim
n→∞

|Kn|

n
,

where |Kn| denotes the number of elements in Kn. Clearly, a finite subset has natural density zero, and we
have δ(Kc) = 1 − δ(K) where Kc :=N \ K is the complement of K. If K1 ⊆ K2, then δ(K1) ≤ δ(K2).

A sequence x = (xn) is said to be r-statistically convergent to L, denoted by xn
r−st
−→ L, provided that

the set {n ∈ N : ∥xn − L∥ ≥ r + ε} has natural density zero for ε > 0; or equivalently, if the condition

st − lim sup ∥xn − L∥ ≤ r is satisfied. In addition, we can write xn
r−st
−→ L if and only if the inequality

∥xn − L∥ < r + ε holds for every ε > 0 and almost all n.
Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on X is a function ∥·, ·∥ : X×X→ R

which satisfies the following statements:

(i) ∥x, y∥ = 0 if and only if x and y are linearly dependent.
(ii) ∥x, y∥ = ∥y, x∥.

(iii) ∥αx, y∥ = |α|∥x, y∥, α ∈ R.
(iv) ∥x, y + z∥ ≤ ∥x, y∥ + ∥x, z∥.

As an example of a 2-normed space we may take X = R2 being equipped with the 2-norm ∥x, y∥ :=
the area of the parallelogram based on the vectors x and y which may be given explicitly by the formula
∥x, y∥ = |x1y2 − x2y1|; x = (x1, x2), y = (y1, y2) ∈ R2.

In this study, we suppose X to be a 2-normed space having dimension d; where 2 ≤ d < ∞. The pair
(X, ∥·, ·∥) is then called a 2-normed space.

A sequence (xn) in 2-normed space (X, ∥·, ·∥) is said to be convergent to L in X if lim
n→∞
∥xn − L, y∥ = 0, for

every y ∈ X. In such a case, we write lim
n→∞

xn = L and call L the limit of (xn).

Let X , ∅. A class I of subsets of X is said to be an ideal in X provided:
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i) ∅ ∈ I, ii) A,B ∈ I implies A ∪ B ∈ I, iii) A ∈ I, B ⊂ A implies B ∈ I.
I is called a nontrivial ideal if X < I. A nontrivial ideal I in X is called admissible if {x} ∈ I, for each x ∈ X.

Let X , ∅. A non empty class F of subsets of X is said to be a filter in X provided:
i) ∅ < F , ii) A,B ∈ F implies A ∩ B ∈ F , iii) A ∈ F , A ⊂ B implies B ∈ F .

Lemma 1.1. [28] If I is a nontrivial ideal in X, X , ∅, then the class F (I) = {M ⊂ X : (∃A ∈ I)(M = X\A)} is a
filter on X, called the filter associated with I.

Example 1.2 ([28], Example 3.1.). Denote by Iδ the class of all A ⊂ N with δ(A) = 0. Then Iδ is non-trivial
admissible ideal and Iδ-convergence coincides with the statistical convergence.

Throughout the paper we take I as an admissible ideal inN.
A sequence x = (xi) is said to be I-convergent to L ∈ Rn, written as I-lim x = L, provided that

{i ∈N : ∥xi − L∥ ≥ ε} ∈ I, for every ε > 0. In this case, L is called the I-limit of the sequence x.
c ∈ Rn is called a I-cluster point of a sequence x = (xi) provided that {i ∈N : ∥xi − c∥ < ε} < I, for every

ε > 0. We denote the set of all I-cluster points of the sequence x by I(Γx).
A sequence x = (xi) is said to be I-bounded if there exists a positive real number M such that {i ∈ N :

∥xi∥ ≥M} ∈ I.
For a sequence x = (xi) of real numbers, the notions of ideal limit superior and ideal limit inferior are

defined as follows:

I − lim sup x =
{

sup Bx , i f Bx , ∅
−∞ , i f Bx = ∅

and

I − lim inf x =
{

inf Ax , i f Ax , ∅
+∞ , i f Ax = ∅

,

where Ax = {a ∈ R : {i ∈N : xi < a} < I} and Bx = {b ∈ R : {i ∈N : xi > b} < I}.
A sequence x = (xi) is said to be rough I-convergent to x∗, denoted by xi

r−I
−→ x∗ provided that {i ∈ N :

∥xi − x∗∥ ≥ r + ε} ∈ I, for every ε > 0; or equivalently, if the condition

I − lim sup ∥xi − x∗∥ ≤ r (1)

is satisfied. In addition, we can write xi
r−I
−→ x∗ iff the inequality ∥xi − x∗∥ < r + ε, holds for every ε > 0 and

almost all i.
A sequence (xn) in (X, ∥., .∥) is said to be rough convergent (r-convergent) to L, denoted by xn

∥.,.∥
−→r L, if

∀ε > 0,∃nε ∈N : n ≥ nε ⇒ ∥xn − L, z∥ < r + ε (2)

or equivalently, if for every z ∈ X

lim sup ∥xn − L, z∥ ≤ r. (3)

If (2) holds L is an r-limit point of (xn), which is usually no more unique (for r > 0). So, we have to
consider the so-called r-limit set (or shortly r-limit) of (xn) defined by

LIMr
2x := {L ∈ X : xn

∥.,.∥
−→r L}. (4)

The sequence (xn) is said to be rough convergent if LIMr
2x , ∅. In this case, r is called a convergence degree

of (xn). For r = 0 we have the classical convergence in 2-normed space again. But our proper interest is case
r > 0. There are several reasons for this interest. For instance, since an orginally convergent sequence (yn)
(with yn → L) in 2-normed space often cannot be determined (i.e., measured or calculated) exactly, one has
to do with an approximated sequence (xn) satisfying ∥xn − yn, z∥ ≤ r, for all n and for every z ∈ X, where
r > 0 is an upper bound of approximation error. Then, (xn) is no more convergent in the classical sense, but
for every z ∈ X, ∥xn − L, z∥ ≤ ∥xn − yn, z∥+ ∥yn − L, z∥ ≤ r+ ∥yn − L, z∥ implies that is r-convergent in the sense
of (2).
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Example 1.3. Let X = R2. The sequence x = (xn) = ((−1)n, 0) is not convergent in (X, ∥., .∥) but it is rough
convergent for every z ∈ X. It is clear that LIMr

2x = {y = (y1, y2) ∈ X : |y1| ≤ r − 1, |y2| ≤ r}. In other words

LIMr
2x =

{
∅ , i f r < 1

Br((−1, 0)) ∩ Br((1, 0)) , i f r ≥ 1,

where Br(L) := {y ∈ X : ∥y − L, z∥ ≤ r}.

A sequence x = (xn) in (X, ∥., .∥) is said to be rough statistically convergent (r2st-convergent) to L, denoted

by xn
∥.,.∥
−→r2st L, provided that the set {n ∈ N : ∥xn − L, z∥ ≥ r + ε} has natural density zero, for every ε > 0

and each nonzero z ∈ X; or equivalently, if the condition st − lim sup ∥xn − L, z∥ ≤ r is satisfied. In addition,

we can write xn
∥.,.∥
−→r2st L, if and only if, the inequality ∥xn − L, z∥ < r+ ε, holds for every ε > 0, each nonzero

z ∈ X and almost all n.
In this convergence, r is called the statistical convergence degree. For r = 0, rough statistically convergent

coincide ordinary statistical convergence.
In general, the rough statistical limit of a sequence x = (xn) may not be unique for the roughness degree

r > 0. So, we have to consider the so-called r-statistically limit set of the sequence x in X, which is defined
by

st − LIMr
2x := {L ∈ X : xn

∥.,.∥
−→r2st L}. (5)

The sequence x is said to be r-statistically convergent provided that st − LIMr
2x , ∅.

Lemma 1.4 ([4], Theorem 2.2). Let (X, ∥., .∥) be a 2-normed space and consider a sequence x = (xn) ∈ X. The
sequence (xn) is bounded if and only if there exist an r ≥ 0 such that LIMr

2x , ∅. For all r > 0, a bounded sequence
(xn) is always contains a subsequence xnk with LIM

(xnk ),r
2 xnk , ∅.

Lemma 1.5 ([4], Theorem 2.3). Let (X, ∥., .∥) be a 2-normed space and consider a sequence x = (xn) ∈ X. For all
r ≥ 0, the r-limit set LIMr

2x of an arbitrary sequence (xn) is closed.

Lemma 1.6 ([4], Theorem 2.4). Let (X, ∥., .∥) be a 2-normed space and consider a sequence x = (xn) ∈ X. If
y0 ∈ LIMr0

2 x and y1 ∈ LIMr1
2 x, then yα := (1 − α)y0 + αy1 ∈ LIM(1−α)r0+αr1

2 x, f or α ∈ [0, 1].

2. Main Results

Definition 2.1. A sequence x = (xn) said to be rough ideal convergence (r2I-convergent) to L in 2-normed space X,

denoted by xn
∥.,.∥
−→r2I L, if for every ε > 0 and each nonzero z ∈ X

{n ∈N : ∥xn − L, z∥ ≥ r + ε} ∈ I

or equivalently, if the condition

I − lim sup ∥xn − L, z∥ ≤ r (6)

is satisfied. In addition, we can write xn
∥.,.∥
−→r2I L, if and only if, the inequality

∥xn − L, z∥ < r + ε,

holds for every ε > 0, each nonzero z ∈ X and almost all n.

Remark 2.2. If I is an admissible ideal, then classical rough convergence implies rough I-convergence in 2-normed
space.
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In this convergence, r is called the roughness degree. For r = 0, rough ideal convergence coincide
ordinary ideal convergence in 2-normed space.

In a similar fashion to the idea of classical rough convergence, the idea of rough ideal convergence of a
sequence in 2-normed space can be interpreted as follows.

Suppose that a sequence y = (yn) in X is I-convergent and cannot be measured or calculated exactly,
one has to do with an approximated (or I approximated) sequence x = (xn) in X satisfying ∥xn − yn, z∥ ≤ r,
for all n and each nonzero z ∈ X, (or for almost all n, that is, {n ∈ N : ∥xn − yn, z∥ ≥ r} ∈ I.) Then, the
sequence x = (xn) is not I-convergent in 2-normed space anymore, but since the inclusion

{n ∈N : ∥yn − L′, z∥ ≥ ε} ⊇ {n ∈N : ∥xn − L′, z∥ ≥ r + ε} (7)

holds for each nonzero z ∈ X and we have

{n ∈N : ∥yn − L′, z∥ ≥ r + ε} ∈ I

and so
{n ∈N : ∥xn − L′, z∥ ≥ r + ε} ∈ I

that is, the sequence x is rough I-convergent in 2-normed space (X, ∥., .∥) in the sense of Definition 2.1
In general, the rough-I limit of a sequence x = (xn) may not be unique for the roughness degree r > 0

in 2-normed space (X, ∥., .∥). So, we have to consider the so-called rough-I limit set of the sequence x in X,
which is defined by

I − LIMr
2x := {L ∈ X : xn

∥.,.∥
−→r2I L}. (8)

The sequence x is said to be rough I-convergent provided that I − LIMr
2x , ∅.

We have that LIMr
2x = ∅ for an unbounded sequence x = (xn). But such a sequence might be rough

I-convergent. For instance, let I be the Iδ ofN and define

xn :=
{

((−1)n, 0) , i f n , k2 (k ∈N)
(n,n) , otherwise (9)

in X. Because the set {1, 4, 9, 16, . . . } belongs to I, we have

I − LIMr
2x :=

{
∅ , i f r < 1,

Br((−1, 0)) ∩ Br((1, 0)) , i f r ≥ 1,

and LIMr
2x = ∅ for all r ≥ 0.

From the example above, we have LIMr
2x = ∅ but I − LIMr

2x , ∅. Because I is an admissible ideal,
LIMr

2x , ∅ implies I−LIMr
2x , ∅ , that is, if x = (xn) ∈ LIMr

2x, then, by Remark 2.2, x = (xn) ∈ I−LIMr
2x, for

each sequence x = (xn). Also, if we define all the rough convergent sequences by LIMr
2x and if we define all

the rough I-convergent sequences by I − LIMr
2x, then we have

LIMr
2x ⊆ I − LIMr

2x.

That is, we have the fact
{r ≥ 0 : LIMr

2x , ∅} ⊆ {r ≥ 0 : I − LIMr
2x , ∅}

and so
inf{r ≥ 0 : LIMr

2x , ∅} ≥ inf{r ≥ 0 : I − LIMr
2x , ∅}.

It also directly yields
diam(LIMr

2x) ≤ diam(I − LIMr
2x).

As mentioned above, we cannot say that the rough I-limit of a sequence is unique for the degree of
roughness r > 0. The following conclusion related to this fact.
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Theorem 2.3. For a sequence x = (xn) in (X, ∥., .∥), we have diam(I−LIMr
2x) ≤ 2r.Also, generally, diam(I−LIMr

2x)
has no smaller bound.

Proof. Suppose that diam(I−LIMr
2x) > 2r. Then, there exist y, t ∈ I−LIMr

2x such that ∥y− t, z∥ > 2r, for each
nonzero z ∈ X. Choose ε ∈

(
0, ∥y−t,z∥

2 − r
)
. Since y, t ∈ I − LIMr

2x we have

T1 = T1(ε) ∈ I and T2 = T2(ε) ∈ I,

where
T1 = T1(ε) = {n ∈N : ∥xn − y, z∥ ≥ r + ε}

and
T2 = T2(ε) = {n ∈N : ∥xn − t, z∥ ≥ r + ε}

for every ε > 0 and each nonzero z ∈ X. By the properties of F (I), we have (Tc
1 ∩ Tc

2) ∈ F (I) and so for all
n ∈ Tc

1 ∩ Tc
2, and each nonzero z ∈ X,we can write

∥y − t, z∥ ≤ ∥xn − y, z∥ + ∥xn − t, z∥
< 2(r + ε)

< 2
(
r +
∥y − t, z∥

2
− r

)
= ∥y − t, z∥

which is a contradiction.
Now let’s do the second part of the proof. Let a sequence x = (xn) in (X, ∥., .∥) such that I − lim xn = L.

Then, for every ε > 0 and each nonzero z ∈ X, we can write

{n ∈N : ∥xn − L, z∥ ≥ ε} ∈ I.

So, for each nonzero z ∈ X, we have

∥xn − y, z∥ ≤ ∥xn − L, z∥ + ∥L − y, z∥
≤ ∥xn − L, z∥ + r,

for each y ∈ Br(L) := {y ∈ X : ∥y − L, z∥ ≤ r}. Then, for every ε > 0 and each nonzero z ∈ X we get

∥xn − y, z∥ < r + ε,

for each n ∈ {n ∈ N : ∥xn − L, z∥ < ε}. Since the sequence x is I-convergent to L, for each nonzero z ∈ X, we
have

{n ∈N : ∥xn − L, z∥ < ε} ∈ F (I).

Hence, we have y ∈ I − LIMr
2x. As a result, we can write

I − LIMr
2x = Br(L).

Since diam(Br(L)) = 2r, this shows that in general, the upper bound 2r of the diameter of the set I − LIMr
2x

can no longer be reduced.

By [[4], Theorem 2.2], there exists a nonnegative real number r such that LIMr
2x , ∅ for a bounded

sequence. Because the fact LIMr
2x , ∅ implies I − LIMr

2x , ∅,we have the following result.

Result 2.4. If a sequence x = (xn) is bounded, then there exists a nonnegative real number r such thatI−LIMr
2x , ∅.

The opposite implication of the above result is not valid. If we let the sequence to beI-bounded in 2-normed
space, then we have the converse of Result 2.4. Hence, we give the following theorem.
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Theorem 2.5. A sequence x = (xn) is I-bounded if and only if there exists a nonnegative real number r such that
I − LIMr

2x , ∅. Also, for all r > 0 and an I-bounded sequence x = (xn) always contains a subsequence (xnk ) with
I − LIM

(xnk ),r
2 xnk , ∅.

Proof. Let x = (xn) be a I-bounded sequence. Then, there exists a positive real number M such that for each
nonzero z ∈ X,

{n ∈N : ∥xn, z∥ ≥M} ∈ I.

Now, we let r1 := sup{∥xn, z∥ : n ∈ Tc
}, where T := {n ∈ N : ∥xn, z∥ ≥ M}, for each nonzero z ∈ X. Then, the

set I − LIMr1
2 x contains the origin of X. Therefore, we have I − LIMr1

2 x , ∅.
If I − LIMr

2x , ∅ for some r ≥ 0, then there exists an L such that L ∈ I − LIMr
2x, i.e.,

{n ∈N : ∥xn − L, z∥ ≥ r + ε} ∈ I,

for each ε > 0 and each nonzero z ∈ X. Then, we say that almost all xn’s are contained in some ball with any
radius grater than r. So the sequence x is I-bounded.

By [[4], Proposition 2.1], we know that if x′ = (xnk ) is a subsequence of x = (xn), then I − LIMr
2x ⊆

I − LIMr
2x′. But this fact does not hold in the theory of ideal convergence. For instance, let I be the Iδ of

N and define

xn :=
{

(n,n) , i f n = k3, (k ∈N)
(0, (−1)n) , otherwise

of real numbers. Then, the sequence x′ := ((1, 1), (8, 8), (27, 27), · · · ) is a subsequence of x.We haveI−LIMr
2x =

Br((0,−1)) ∩ Br((0, 1)) and I − LIMr
2x′ = ∅, for r ≥ 1.

So we can present the statistical analogue of Arslan and Dündar’s result [[4], Proposition 2.1] in the
following theorem without proof.

Theorem 2.6. If x′ = (xnk ) is a nonthin subsequence of x = (xn), then

I − LIMr
2x ⊆ I − LIMr

2x′.

Now, we give the topological and geometrical properties of the rough I-limit set of a sequence in
2-normed space.

Theorem 2.7. The rough I-limit set of a sequence x = (xn) in 2-normed space is closed.

Proof. If I − LIMr
2x = ∅, proof is clear. Let I − LIMr

2x , ∅. Then, we can choose a sequence

(yn) ⊆ I − LIMr
2x

such that yn → L, for n→∞. For the proof we have to show that L ∈ I − LIMr
2x.

Since yn → L, for every ε > 0 there exists an n ε
2
∈N such that

∥yn − L, z∥ <
ε
2
,

for all n > n ε
2

and each nonzero z ∈ X. Now choose an n0 ∈ N such that n0 > n ε
2
. Then, we can write

∥yn0 − L, z∥ < ε2 . On the other hand, since (yn) ⊆ I − LIMr
2x,we have yn0 ∈ I − LIMr

2x, that is,{
n ∈N : ∥xn − yn0 , z∥ ≥ r +

ε
2

}
∈ I.

Now let us show that the inclusion{
n ∈N : ∥xn − yn0 , z∥ < r +

ε
2

}
⊆ {n ∈N : ∥xn − L, z∥ < r + ε} (10)
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holds for each nonzero z ∈ X. Let k ∈ {n ∈N : ∥xn − yn0 , z∥ < r + ε2 }. Hence, for each nonzero z ∈ X we have

∥xk − yn0 , z∥ < r +
ε
2

and so

∥xk − L, z∥ ≤ ∥xk − yn0 , z∥ + ∥yn0 − L, z∥ < r +
ε
2
+
ε
2
= r + ε,

that is,
k ∈ {n ∈N : ∥xn − L, z∥ < r + ε},

which proves (10). So we have

{n ∈N : ∥xn − L, z∥ ≥ r + ε} ⊆
{
n ∈N : ∥xn − yn0 , z∥ ≥ r +

ε
2

}
,

for each nonzero z ∈ X. Since
{
n ∈N : ∥xn − yn0 , z∥ ≥ r + ε2

}
∈ I, for each nonzero z ∈ X we have

{n ∈N : ∥xn − L, z∥ ≥ r + ε} ∈ I,

(i.e. L ∈ I − LIMr
2x), which completes the proof.

Theorem 2.8. The rough I-limit set of a sequence in 2-normed space is convex.

Proof. Let y0, y1 ∈ I − LIMr
2x for the sequence x = (xn). For every ε > 0 and each nonzero z ∈ X,we define

T1(ε) := {n ∈N : ∥xn − y0, z∥ ≥ r + ε} and T2(ε) := {n ∈N : ∥xn − y1, z∥ ≥ r + ε}.

Since y0, y1 ∈ I − LIMr
2x,we have T1(ε) ∈ I and T2(ε) ∈ I. Hence, for each n ∈ Tc

1(ε) ∩ Tc
2(ε) we have

∥xn − [(1 − λ)y0 + λy1], z∥ = ∥(1 − λ)(xn − y0) + λ(xn − y1), z∥ < r + ε

for each λ ∈ [0, 1] and each nonzero z ∈ X. Since, Tc
1(ε) ∩ Tc

2(ε) ∈ F (I) by definition F (I), we have

{n ∈N : ∥xn − [(1 − λ)(y0) + λy1], z∥ ≥ r + ε} ∈ I,

that is,
[(1 − λ)(y0) + λy1] ∈ I − LIMr

2x,

for each nonzero z ∈ X. This proves the convexity of the set I − LIMr
2x.

Theorem 2.9. A sequence x = (xn) is rough I-convergent to L, if and only if there exists a sequence y = (yn) such
that I − lim y = L and ∥xn − yn, z∥ ≤ r, for each n ∈N and each nonzero z ∈ X.

Proof. Let xn
∥.,.∥
−→r2I L. Then, by definition for each nonzero z ∈ X we have

I − lim sup ∥xn − L, z∥ ≤ r. (11)

Now, for each nonzero z ∈ X we define

yn :=
{

L , i f ∥xn − L, z∥ ≤ r
xn + r L−xn

∥xn−L,z∥ , otherwise. (12)

Then, for each nonzero z ∈ X we can write

∥yn − L, z∥ =
{

0 , i f ∥xn − L, z∥ ≤ r
∥xn − L, z∥ − r , otherwise (13)
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and by definition of yn,we have
∥xn − yn, z∥ ≤ r, for all n ∈N.

By (11) and the definition of yn, for all n ∈ N we have I − lim sup ∥yn − L, z∥ = 0, which implies that
I − lim yn = L.

Conversely, since I − lim yn = L,we have

{n ∈N : ∥yn − L, z∥ ≥ ε} ∈ I,

for each ε > 0 and each nonzero z ∈ X and so, it is easy to see that the inclusion

{n ∈N : ∥xn − L, z∥ ≥ r + ε} ⊆ {n ∈N : ∥yn − L, z∥ ≥ ε}

holds. Since
{n ∈N : ∥yn − L, z∥ ≥ ε} ∈ I,

for each nonzero z ∈ X, we have
{n ∈N : ∥xn − L, z∥ ≥ r + ε} ∈ I,

which completes the proof.

If we replace the condition

”∥xn − yn, z∥ ≤ r, for all n ∈N and for each nonzero z ∈ X, ”

in the hypothesis of the above theorem with the condition

”{n ∈N : ∥xn − yn, z∥ > r} ∈ I”,

then the theorem will also be valid.

Definition 2.10. Let I ⊂ 2N an admissible ideal. c ∈ X is called a ideal cluster point of a sequence x = (xn) provided
that the set

{n ∈N : ∥xn − c, z∥ < ε} < I

for every ε > 0 and each nonzero z ∈ X. We denote the set of all I-cluster points of the sequence x by I(Γ2
x).

Now, we give an important property of the set of rough I-limit points of a sequence.

Lemma 2.11. LetI ⊂ 2N an admissible ideal. For an arbitrary c ∈ I(Γ2
x) of a sequence x = (xn),we have ∥L−c, z∥ ≤ r,

for all L ∈ I − LIMr
2x and for each nonzero z ∈ X.

Proof. Assume on the contrary that there exists a point c ∈ I(Γ2
x) and L ∈ I − LIMr

2x such that

∥L − c, z∥ > r,

for each nonzero z ∈ X. Define ε := ∥L−c,z∥−r
3 . Then, for each nonzero z ∈ X we can write

{n ∈N : ∥xn − L, z∥ ≥ r + ε} ⊇ {n ∈N : ∥xn − c, z∥ < ε}. (14)

Since c ∈ I(Γ2
x), for each nonzero z ∈ X we have

{n ∈N : ∥xn − c, z∥ < ε} < I.

But from the definition of I-convergence, since

{n ∈N : ∥xn − L, z∥ ≥ r + ε} ∈ I,

so by (14), for each nonzero z ∈ X we have

{n ∈N : ∥xn − c, z∥ ≥ ε} ∈ I,

which contradicts the fact c ∈ I(Γ2
x). On the other hand, if c ∈ I(Γ2

x) then,

{n ∈N : ∥xn − L, z∥ ≥ r + ε}

must not belong to I,which contradits the fact L ∈ I − LIMr
2x. This completes the proof.
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Now we give two I-convergence criteria associated with the rough I-limit set.

Theorem 2.12. Let I ⊂ 2N an admissible ideal. A sequence x = (xn) is ideal convergent to L if and only if
I − LIMr

2x = Br(L).

Proof. Since x = (xn) is ideal convergent to L, by the proof of Theorem 2.3 we have

I − LIMr
2x = Br(L).

Since I−LIMr
2x = Br(L) , ∅, then by Theorem 2.5 we can say that the sequence x is I-bounded. Assume

on the contrary that the sequence x has another I-cluster point L′ different from L. Then, the point

L := L +
r

∥L − L′, z∥
(L − L′)

satisfies
∥L − L′, z∥ =

( r
∥L − L′, z∥

+ 1
)
∥L − L′, z∥ = r + ∥L − L′, z∥ > r.

Since L′ is a I-cluster point of the sequence x, by Lemma 2.11 this inequality implies that L < I − LIMr
2x.

This contradicts the fact
∥L − L, z∥ = r and I − LIMr

2x = Br(L).

Therefore, L is the unique I-cluster point of the sequence x and so, we can say that the sequence x is
I-convergent to L. Hence L is the unique I-cluster point of the sequence x as a bounded sequence (by
Theorem 2.5) in some finite-dimensional normed space. Consequently, we can say that

xn
∥.,.∥
−→I L.

This completes the proof.

Theorem 2.13. Let I ⊂ 2N an admissible ideal, (X, ∥., .∥) be a strictly convex space and x = (xn) be a sequence in
this space. If there exist t1, t2 ∈ I − LIMr

2x such that ∥t1 − t2, z∥ = 2r for each nonzero z ∈ X, then this sequence is
I-convergent to 1

2 (t1 + t2).

Proof. Assume that t ∈ I(Γ2
x). Then, t1, t2 ∈ I − LIMr

2x implies that

∥t1 − t, z∥ ≤ r and ∥t2 − t, z∥ ≤ r (15)

for each nonzero z ∈ X, by Lemma 2.11. On the other hand, for each nonzero z ∈ X,we have

2r = ∥t1 − t2, z∥ ≤ ∥t1 − t, z∥ + ∥t2 − t, z∥, (16)

and so
∥t1 − t, z∥ = ∥t2 − t, z∥ = r,

combining the inequalities (15) and (16). Since for each nonzero z ∈ X,

1
2

(t2 − t1) =
1
2

[(t − t1) + (t2 − t)] (17)

and ∥t1 − t2, z∥ = 2r,we have

∥
1
2

(t2 − t1), z∥ = r.

By the strict convexity of the space and from the equality (17), we get

1
2

(t2 − t1) = t − t1 = t2 − t,



M. Arslan, E. Dündar / TJOS 9 (1), 6–18 16

for each nonzero z ∈ X, which implies that

t =
1
2

(t1 + t2).

Hence, t is the unique I-cluster point of the sequence x = (xn). On the other hand, the assumption
t1, t2 ∈ I − LIMr

2x implies that
I − LIMr

2x , ∅.

By Theorem 2.5, the sequence x is I-bounded. Consequently, the sequence x is I-convergent, that is,

I − lim x =
1
2

(t1 + t2).

The following Theorem is the ideal extension of [[5], Theorem 2.5].

Theorem 2.14. (i) If c ∈ I(Γ2
x) then,

I − LIMr
2x ⊆ Br(c). (18)

(ii)

I − LIMr
2x =

⋂
c∈I(Γ2

x)

Br(c) = {L ∈ X : I(Γ2
x) ⊆ Br(L)}. (19)

Proof. (i) Let c ∈ I(Γ2
x). Then, by Lemma 2.11, for each nonzero z ∈ X we have

∥L − c, z∥ ≤ r, for all L ∈ I − LIMr
2x,

otherwise we get
{n ∈N : ∥xn − L, z∥ ≥ r + ε}) < I,

for ε := ∥L−c,z∥−r
3 . Since c is an I-cluster point of (xn), this contradicts the fact L ∈ I − LIMr

2x.
(ii) From the inclusion (18), we get

I − LIMr
2x ⊆

⋂
c∈I(Γ2

x)

Br(c). (20)

Now, let y ∈
⋂

c∈I(Γ2
x)

Br(c). Then, for each nonzero z ∈ X, we have

∥y − c, z∥ ≤ r,

for all c ∈ I(Γ2
x),which is equivalent to

I(Γ2
x) ⊆ Br(y),

that is, ⋂
c∈I(Γ2

x)

Br(c) ⊆ {L ∈ X : I(Γ2
x) ⊆ Br(L)}. (21)

Now, let y < I − LIMr
2x. Then, there exists an ε > 0 such that for each nonzero z ∈ X,

{n ∈N : ∥xn − y, z∥ ≥ r + ε} < I,
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which implies the existence of a I-cluster point c of the sequence x with

∥y − c, z∥ ≥ r + ε,

that is,
I(Γ2

x) ⊈ Br(y) and y < {L ∈ X : I(Γ2
x) ⊆ Br(L)}.

Hence,
y ∈ I − LIMr

2x

follows from
y ∈ {L ∈ X : I(Γ2

x) ⊆ Br(L)},

that is,

{L ∈ X : I(Γ2
x) ⊆ Br(L)} ⊆ I − LIMr

2x. (22)

Therefore, the inclusions (20)-(22) ensure that (19) holds, that is,

I − LIMr
2x =

⋂
c∈I(Γ2

x)

Br(c) = {L ∈ X : I(Γ2
x) ⊆ Br(L)}.

We end this work by giving the relation between the set of I-cluster points and the set of rough I-limit
points of a sequence.

Example 2.15. Consider the sequence x = (xn) defined in (9) and let I be the Iδ ofN. Then, we have

I(Γ2
x) = {(−1, 0), (1, 0)}.

It follows from (19) that
I − LIMrx = Br((−1, 0)) ∩ Br((1, 0)).

In this last part of the study, we give the relation between the set of I-cluster points and the set of rough
I-limit points of a sequence in 2-normed space.

Theorem 2.16. Let x = (xn) be a I-bounded sequence in X. If

r = diam(I(Γ2
x)),

then we have
I(Γ2

x) ⊆ I − LIMr
2x.

Proof. Let c1 < I − LIMr
2x. Then, there exists an ε1 > 0 such that, for each nonzero z ∈ X

{n ∈N : ∥xn − c1, z∥ ≥ r + ε1} < I. (23)

Since the sequence is I-bounded and from the inequality (23), there exists another I-cluster point c2 such
that, for each nonzero z ∈ X,

∥c1 − c2, z∥ > r + ε2,

where ε2 :=
ε1

2
. Hence, we get

diam(I(Γ2
x)) > r + ε2,

which proves the theorem.
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[12] E. Dündar, C. Çakan, Rough convergence of double sequences, Demonstr. Math. 47(3) (2014) 638–651.
[13] E. Dündar, On Rough I2-convergence, Numer. Funct. Anal. Optim. 37(4) (2016) 480–491.
[14] E. Dündar, M. Arslan, S. Yegül, On I-Uniform Convergence Of Sequences Of Functions in 2-Normed Spaces, Rocky Mountain

J. Math. 50(5) (2020), 1637–1646
[15] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
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