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Dynamic Hardy-Littlewood Type Inequalities via Time Scales
Involving Nabla Integrals

Ammara NOSHEEN?, Khuram Ali KHAN?, Muhammad Rizwan SHABBIR?

?Department of Mathematics, University of Sargodha, Sargodha 40100, Punjab, Pakistan

Abstract. Hardy-Littlewood inequalities via nabla time scales calculus are studied in this paper. The results
are proved by using time scales analogues of chain rule, Holder s inequality, some algebraic inequalities, and
integration by parts. Particular cases include some discrete novel Hardy-Littlewood inequalities by fixing
time scales. Moreover, special cases also include some existing integral and discrete Hardy-Littlewood
inequalities in literature.

1. Introduction

An English mathematician Hardy proposed classical discrete double series inequality known as the
Hardy inequality. Hardy inequality is significant in terms of usability, scope, and range of applications.

In [9], the following discrete inequality is proved by Hardy in 1920

Z[ ZF;] s( g )EF 0>1, (1)

m=1

where F,, is a series of positive terms for m > 1.

Continuous version of (1) is established by Hardy [6] in 1925, by using calculus of variations. He proved
that if F > 0 is integrable over (0, y) and F? is integrable and convergent function over (0, o) for ¢ > 1, then

00 1 Yy 4 Q )@ 0o
= | F)dn| d — Fo(y)dy.
fo(yfo () ) y§(9_1 fo (y)dy )

)g in (1) and (2) is sharp.
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In [10], Hardy and Littlewood demonstrated that if ¢ > 1 and F,, is a series of positive terms, then

and

00 m 4 00
1 1,
Y %[ Fl] MY ——=F e>1, @)

where M is a positive constant (see[21]).

In [8], the continous versions of (3) and (4) were created by Hardy in 1928. He demonstrated that for
any integrable function F(y) > 0 on (0, o), 0 > 1,

00 1 00 4 0 0 00 1 )
fo ﬁ(fy F(h)dh) dys(l_n) fo @y, n<1, 5)

and

00 1 Y o Q 0 00 1 .,
fo y—( fo F(h)dh) dys(m) fo ey, >, ©)

There are number of dynamic Hardy-type inequalities on time scales that have been discovered by
several researchers who were inspired by certain useful applications. In recent decades, S. H. Saker et al.
proved dynamic inequalities of the Hardy and Littlewood types on time scales via delta calculus. They
also proved some dynamic inequalities on time scales via delta calculus which contain several integral and
discrete inequalities owing to Hardy, Littlewood, Copson, Chow, Levinson, Pachpatte Yang, and Hwang
[19, 20]. In[12], El-Deeb proposed some dynamic inequalities of Hardy-Hilbert type on time scales by using
delta calculus with the help of the Fenchel-Legendre transform and submultiplicative functions. El-Hamid
et al.[5] proposed some dynamic Hilbert-type inequalities for two variables on time scales via delta calculus.
In [11], Ivan Gaj and Vasil Gochev investigated the behavior of the smallest possible constant in the Hardy
inequality for finite sequences.

The objectives of the study are to present some Hardy-Littlewood type inequalities by using nabla
calculus. We recover few integral and discrete inequalities that have been documented in the literature as
particular cases of the main findings. The following is the order of this article: Section 2 introduces some
fundamentals from nabla times scales calculus. Key findings are given in Section 3. The conclusion is
presented in Section 4.

2. Preliminaries

Every non-empty closed subset of real numbers R is referred to a time scale denoted by T. The conven-
tional topology on the real numbers R is adopted by T. To learn more about time scales calculus, (see[1-3]).
Few basic concepts related to time scales theory, are as follow:

Backward jump operator p : T :— T is defined by
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p(i):=sup{€eT: ¢ <h}, heT.
Backward graininess function v : T — [0, 0), is defined as
v(f) = — p(h).
Definition 2.1. [2] Let F : T — R be a function and let hi € Ty. we define FY (i) with the characteristic that for any
€ > 0, there exist a neighborhood N of i (i.e N = (hi — 0,7 + )T for some 6 > 0) such that

| [FP(R) — F(s)] - F¥(n) [p(h) —s]I<e|p(f)—s| foranysé€N.

We state this F" (1) is the nabla derivative of F at h.
Definition 2.2. [2] A function F : T — IR is said to be left-dense continuous (ld-continuous) provided F is contin-

uous at left-dense points and at right-dense points of T, right-hand limits exist and are finite. The set of all such
Id-continuous functions is denoted by Cj4(T).

(Integration by parts).[1] Let d, o € T, where ¢ > d. If QO, ¥ are nabla differentiable, then

fd ’ Q) [WY ()| Vi = [Qr) W) - fd ’ [Q¥ )] wemvn. 7)

(Chain rule).[1] Suppose W : T — R is continuous and nabla differentiable at i € Ty, and w : R — R is
continuously differentiable. Then
(o W)Y (1) = ' (W)W (M), c € [p(), 1]. (8)

(Holder inequality).[3] Letd, o € T, where o > d. If v, ¥ : T — R, then

% 0 (oo 5
fd |a)(h)\I’(h)|Vhs( fd (i) Vh) ( fd ()| Vh) . ©)

(Keller chain rule).[2] Assume W € CZ(T) and let F : R — R s a continuously differentiable function.
Then, (F o W) : T — R is nabla differentiable and

1
(Fow)V(h) = { fo F' (W (p() — ho(r)¥" (1)) dh} wY(n). (10)

The following inequalities are also used to prove the main results:

29071 (P 4+ k) < ( + K)Y < (XY +kY), where x,k>0and 0 <w <1,
(11)

and

U+ K < (M +K)° <297V (@ + k%), if %, k>0, @>1.
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3. Main Results

57

Throughout the results, we assume that the integrals under investigation endure and the functions are

nonnegative, 1d-continuous, nabla differenciable, and locally nabla integrable over [0, co)t := [0, c0) N T.

Theorem 3.1. Let T be a time scale with o € (0, 00)y and r,s > 0 such that - > 1and ¢ < 1. Assume, x > 0 and the
integral fo “(p()) =515 (R)VH exists. Suppose

2(h) = foo k()VL, forany T €[, 0o)r.
f

Then

()

= (@) Ve
Vi Vh
o P S(sﬂ—c))f@ (p(m)=*

Proof. Applying integration by parts formula (7) on left side of (13) with

oY) = 5,

[

where v(h) = f " (ﬁ) V{. Using the chain rule (8) and the reality that p(€) < €, we have

fi
4

)

This implies that

v (1)

Combining (14), (15), we get that

T E): o,

p(7) p(1)
[ tovee o [
o PO 1-¢J,

I<

[

and u(h) = (E(H))*, we obtain

V= ool + [ o (-=im) v
4

1
(1-¢) fo [hp(0) + (1 — h)¢]dh

dh
-9 o o0+ (= iF
0y dn (-9

1 1 1 1

1-cp(iy' 1-cgt

P ()

e f G|

o hp(O)+ (A -mp@©)lc  p=(O)

\%
1)%

T

1-¢

1

- (= (h))v) Vi

(p(m)'=*.

(12)

(13)

(14)

(15)

(16)

Using the chain rule «¥ (c()) = «’(x(c))x" (i), where c € [p(h), ii], We can observe that there is ¢ € [p(Fi), Fi] such

that

e (= o)
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Since BY (1) = —« (1) < 0 and ¢ < 1, we have

-(Em)" < (5) @ )

Substituting (17) into (16), we have

TEM G, (TEmT

h)Vh.
0 p=(1) “s(1-9¢) 0 (p(;-l))g_l w(f)
This implies
" E0) r = (W) 7 x(h) (E()i!
fg pc(h) Vi < s(1-¢) fé; (p(h))=—t (pg(h))@ Vh. (18)

Applying the Holder inequality (17) on the term

(pem) ™ )7 ) -
N <h>} (707 @y om
with indices £ and -, we obtain
o [ (os(h)) T - .
fg [%x(ﬁ)} (o) 7 @)=V

SU [ipgo(%)))l (m] v U (“fféi ]

Substituting above inequality into (18), we have

® (B(h)):
f ((pgh;;c vn<(s(1 ) f (p(h))s =<k (M)VH,
4

which is the desired (13).

Remark 3.2. When T = Rand . = @ > 1 and ¢ < 1, we have the following Hardy type inequality which is given

in [6].
[ ([ woe) < (2 [ e -

Let B(h) = fhm x(€)d. Thus, (note that E(oc0) = 0), we have

1 @ \° (1 _, .
fo ﬁ(:(h))’dhs(m) f@ - (E0)° dh

(19) may be thought as an extension of Wirtinger’s inequality, (see[17]).
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Remark 3.3. When T= 1™ ={hi:h =g keN,,qg>1}, =@ >1,0=1and ¢ <1, we have

L @ [Z qm(l"K(qm)] <(y2) Zq (1= D).

k=1 m=k+1

Remark 3.4. When T = =Z and © = @ > 1and ¢ <1, we have

i = h)g( y hK(hm)} s( C) Z R ().

n=£+1 m=4+1

We will suppose there is a constant K > 0 for the rest of the results, with

£ 1
- Z -,
p() — K
Theorem 3.5. Let T be a time scale with o € (0, c0)y and r,s > 0 such that £ > 1and ¢ > 1. Assume, x > 0 and the
integral fom 15~k (W) Vi exists. Define

for{ > p, where g€(0,00).

vl
B(H) = f K(OVE,  forany € [g o). (20)

Then

© 1 ke Vo1
f@ﬁ(ur’(ﬁ)) th(s(g—l))f@ v —ic: () Vh. (21)

Proof. Applying integration by parts formula (7) on left side of (21) with u" (%) = 1 = and 0P (1) = (8P (), we

obtain

~ (BP(h))* TS .,
jé: %Vﬁ: [u(h):'s(h)]'g +fg (—M(h))<55(h))vVh, (22)

where

() = fh ) (%)w. (23)

Using (8), we have that

dh

—_—
S
ol
B
N —
<
|

1
(e~ 1’fo (O + (L= WeT
1
1
(e ”fo Tip(@) + (L= pOF "

Te-1), (-1
fo (pg(f))dh =0 @4

\%
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From (23) and (24), we see that

v
(—_1) S (c— 1).
fe-1) = Kege
Then
fw Ly K oo("—1)V ve- X (L)
A S VIV VA (c—-1)\p1)”
Hence

= [ (s 5 )

From (20), (22), (23) and (26), we have (note that u(co) = 0 and E(p) = 0) that

i RN K (1 ;..\
f@ o (8P(m)* Vi < Y fg — (Bfm) Vn.

Applying (8) on the term (E¢ (1))", we obtain

(Em) = (2)55—1(c)av(h).

Since V(1) > 0 and p(h) < ¢, we have

(2m) < (g) (P () ().

Substituting (28) into (27), we have

> (2r(h)* rkKe @)
f@ VS g fp KV

It implies that

= (Erm)’ rK® " (1e - o (= e
fg VIS f (et | 0™ @2y |

Applying the Holder inequality (9) on the term

fom [(hc)"%s’hc—lK(h)] 7 @) v,

[

with indices t and -, we see that

60

(25)

(26)

(27)

(28)

(29)
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pel

(7%) 2
< { f@ (h)} Vi

Substituting (30) into (29), we have

| [(hg"xaﬂ] )7 @) v
4

[ (:p(h)) vn] . (30)

s
r

f L@y vis K
) FEy

(07 ]
f@ [ — K(h)] Vh

(”F’(h)) '
X [f@ ] . (31)

This gives that

001 r I’KC 5 0 r r
— (EP(h))s Vh < fis—°xs (h)VHA,
f@hg () (S(C_l))fg ()

which is the desired (21).

Remark 3.6. When T = Rand . = @ > 1 and ¢ > 1, we have the following Hardy type inequality which is given

in[6].
f@ ) hl—c ( fg ' K(f)df)o dh < (%)m f ) hgl_m @ (h)dh. (32)

Let Z(h) = fg " x(€)de. Thus, (note that E(p) = 0), we have

f@ i hl (B(n))” dh < (CC_Dl)‘D f:’ hgl_@ B'(h)° dh

The inequality (32) may be thought as an extension of Wirtinger’s inequality, (see[17]).

When ¢ = @ > 1 we have traditional Hardy type inequality which is given in [6].

f: hl (f; K(f)df)@ dh < (@‘3 1)‘” f: <)

Remark 3.7. When T = 1™ = {li: i = ¢, k€ N,,q> 1}, L =@ >1,0=1and ¢ > 1, we have

25 \° & (1—1)
Za(qk)s {Zq (- )K(qm)] S(2 ) Z(qk)go 7 7).

k=1 m=2

Remark 3.8. When T = =Z and . = ® > 1and ¢ > 1, we have

n—h @ @ o
g [Z hK<hm>] (22 ¥

_¢
n=%+1 m=%+1 n=g+1

@ (hn).
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Theorem 3.9. Let T be a time scale with ¢ € (0, c0)t and r,s > 0 such that - > 2 and ¢ > 1. Assume, x > 0 and the
integral f;o hS=cics (R)Vii exists. E() be defined in (20). Then

] 2K (1, '
[ wemims U =

U SR ]7-+2;_2KC 0 gy
(g_l) 0

Proof. From inequality (27) of Theorem 3.5, we have

©1 K (1 ;..\
fg = (E°(n)° Vh < — f hg—_l(as(h)) V. (33)
Utilizing (10) on the term (E (h))v, we have
1
Y T _ _ —
(E5m) == fo (2() - hv(n)E" (1)) dhE" (),

where EY (1) = «(f1) > 0, we have

(E%(rz))V = (E)K(h) fo 1[E(h) +vi) L.

Utilizing (11) on the term [E + hvi)S™, and £ > 2, we see

(Em) < (g)zi—ZK(h) EP () + 25 2k () (vie) . (34)

Substituting (34) into (33), we have

~ (BP(h)* (:P(h) )~
fg = Vi< s(g 1) f ——x()Vh (35)
207K (V(h))"l(K(h))
+ 1 f@ o) Vh. (36)

This implies that

0o 1 _ :
| e

i S (G 922 =onn =
R [ fie1 "(h)} [(h) (BP(R)) S ]Vh
212K (il
" c—1 j; he-1 (f(n)):Vh. )

Uses the Holder inequality (9) on the term
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fg i [G;)l f(h)] [

to obtain

)?]wi

N
@) ]
X [ fg e Vh]

272K vitl(h) ,
T f D eqmyivn, (39)

with indices t and - = 5),

f SL — (2P(h))* Vh <2
0 S

which is the desired (33).

Remark 3.10. When T = R, we have the following Hardy-type inequality which is given in [6]. If ® = £ > 2 and

¢ >1, then
1" © 202\ M 1
fg h—( f K(f)dé’) dh<(C 1) fg k().

Remark 3.11. When T =N = {ii: i = qk,k €Ny, g>1},: =@>1,0=1and ¢ > 1, we have
) k-1 @ @ o _
1 " 2(D =
Z [Z (1= (g )] ( ) Z k)g ()
=1 m=2 k=1
© 4 (2 1 @17
|\l [Z q"(1- §>K<q’">J ]
k=1 m=2

20 - 2)‘3 = (=)@ =)
+ — x°(q").
( ¢-1 ; (gF)s—ot

Remark 3.12. When T ==Z, % =@ > 1, and ¢ > 1, we have

n=£+1 m="2+1 =f+1
0 1 n—h o1%
Z 08 Z hic(hm)
n=2+1 ' m="%+1
20 -2\ & REY
(55) I gneon
£y

n=g

Theorem 3.13. Let a time scale T with ¢ € (0, 00)y and r,s > 0 such that £ > 2 and ¢ > 1. Suppose, x > 0 and the
integral fo * hi~cict (H)Vh exists. E(1) be defined in (20). Then
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© . 2IKE M1,
L mrmyive < [22K L mwn.
fghg ) (<g_1>)fg i

Proof. From inequality (27) of Theorem 3.5, we have

©1 = :
f@ h—g(up(h))~Vh< 1)f [cl

Utilizing (10) and inequality (11), we obtain

(Em) <2521 [ {020 " + (1 - 1B dhEY ()
=22 @) + B 2V ()
<282 [(@0) 7+ (@0) 7 ().

This implies that

(&5 0m) <25 @) xlh).

Hence

| r 2571Ke 1 rq
— :‘p S ’:‘p s
fg = (BP(h)): Vi < (c;—l)fg P (h)): ™ x(h)Vh,

and thus

(r=s) 5)

A PN 2:71Ke he :

IO

< 22 [ NGE ”hc—lx(h)]gvn];[ [ —G"}j“’”wr

c—

This implies that

[fgw%(gp(h));wi] - < 2i-1Ke [Loo (

Then

© 1 . 2EIKENS 1,
__ (=P s —_s
fg — (°() Vhs( — ) f (),

which is the desired inequality (39).

'si]vrz

Utilizing the Holder inequality (9) on the rzght hand side with indices % and -, we obtain

]Svn]y.

64

(39)

(40)

(41)

(42)

(43)

(44)

(45)
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Remark 3.14. when T = R, we have the following Hardy-type inequality which is given in [6]. If ® = L > 2 and

c>1, then ’
1 (" 20-1p\? ™ 1
il < @ .
fg = ( f@ K(f)d{f) dn < ( — 1) f@ k()

Remark 3.15. When T = N+ :{h:h:qk,kE]Ny,q>1},§:®>1,Q:1andg>1,wehave

@

= 1 = 1 “ 014 ® © 1_1)
L [—— m @
k;(qk)g (éq( Ak >] ( ) kZ e !

Remark 3.16. When T ==Z, % =@ > 1 and ¢ > 1, we have

(o)

1 n-h © 2@ 1 5

In the following section, we take into account the situation in which £ < 2. We require the inequality to
support these findings.

Applying this inequality (11) when w = £ — 1 < 1, we see that

<2

» =

1 ry_
ff [A+heA" 7 dn < A+ )i,
s Jo s

From Theorem 3.9, leads to:

Theorem 3.17. Let T be a time scale with ¢ € (0, 00)y and r,s > 0 such that £ < 2 and ¢ > 1. Assume, x > 0 and
the integral fo Rt ~cxct () VH exists. Suppose that « > 0 is and let E(f) be as defined in (20). Then

< (BP(h))* *—1<h>
—’_Vh - K¢ (k(h))*V.
= |5

K[ <:P<h>> B
< m [L o —Ks (h)Vh] [ Vh] . (46)

Theorem 3.13, leads to:

Theorem 3.18. Let T be a time scale with ¢ € (0, 00)y and r,s > 0 such that £ < 2 and ¢ > 1. Suppose that x > 0
and let E(7) be as defined in (20). Then

f:%(apm)) Vi < (gf_(l)’ fg"" h}iK )V

Theorem 3.13, leads to:
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Theorem 3.19. Let T be a time scale with ¢ € (0,00)t and ¢ < 1 by utilizing the function E(h) defined in (12).
Using the inequality (11) on the term [hEP + (1 — W)E)]= ™, when £ —1<1, weobtain

-1

1 5_
! f [h5P+(1—h)5)] dh
5 Jo

1
ff [t @0t + (1 - myitEsdn
0

<
S
= @)t +ei] <2m ).
This implies that
AP, 2 ([T =N
fg oty SV < T f( [pg_l(h) K(h)] |y @y v (47)

From Theorem 3.1, we have the following result:

Theorem 3.20. Let T be a time scale with ¢ € (0, co)y and r,s > 0 such that - < 2 and ¢ < 1. Suppose, x > 0 and
the integral [ (p(H)): <1t (H)VH exists. Then

P

j:" pcl(h) (jhm K(f)V[)S Vi < (%)Z j;o W(K(h))lwq_ (48)

4. Conclusion

A number of Hardy-Littlewood inequalities are developed via nabla calculus in the paper. The main
results also hold true when the time scale interval [g, o), is substituted with [, d]t. The delta analogues
of the present results are obtained in [18]. The main results of the present work are also estimated for
T={=<Z,h>0and T = 1™ = {qk,k € Nk, g > 1}, which are not discussed before. Moreover, Some special
cases coincide with some classical inequalities by choosing T = IR.
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