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Abstract. In this study, we considered a different sequence with bicomplex coefficients. We investigated
some important properties of this new number sequence that we created by giving the g— form and finding
the exponential generating function. Moreover, we obtained the fundamental combinatorial identities
related with these sequences.

1. Introduction

Bicomplex numbers form a commutative algebra, which is a generalization of complex numbers. Unlike
algebra of complex numbers, bicomplex algebra is isomorphic to the direct sum of two algebras on complex
numbers[3]. In this one, apart from the obvious idempotent elements, two idempotent elements, the zero
divisors and the orthogonal element e; and e, can be created. With the help of these idempotent elements,
every bicomplex number z can be written in a unique way. These idempotent elements {ej,e,} form a
base for the bicomplex numbers on the scalar field complex numbers. Most of the properties of complex
numbers are still provided in bicomplex algebra[13]. Bicomplex numbers are used in many fields. Some
of its uses are describing fractals, studying integer sequences, and computer graphics applications[8, 14].
In [5], the author introduced bicomplex numbers whose coefficients were selected from the sequence of
Jacobsthal-Lucas numbers and studied some known identities. In [2], the author has studied bicomplex
third-order Jacobsthal numbers and gave the Binet formula, generating function and some properties of
this sequence. In [8], the authors have investigated new families of Fibonacci and Lucas octonions with g
integer components in detail. In [4], the author has defined and also examined the Horadam bicomplex
numbers. Any bicomplex number z is written by complex coefficients[12].

z=z11+zj=(z1 —iz2)e1 + (z1 +izp) 2 (1)

wherezy = by +iby, zo = by +ibs, i% = j2 = —1. Bicomplex numbers whose are coefficients from Jacobsthal
and Jacobsthal-Lucas numbers are defined as follows[5]:

]BC]n = ]n + ]n+1i + ]n+2j + ]n+3ij/ ]BCjn = jn + jn+1i + jn+2j + jn+3ij- (2)

Corresponding author: SC mail address: sule9220@gmail.com ORCID:0000-0002-4514-6156, SH ORCID:0000-0002-8071-0437, OD
ORCID:0000-0001-5870-5298.

Received: 5 March 2024; Accepted: 12 April 2024; Published: 30 April 2024

Keywords. Bicomplex numbers, Quantum integers, Recurrences.

2010 Mathematics Subject Classification. 30G35, 05A30, 11B37.

Cited this article as: Halici, S., Deveci, O., & Ciiriik S. (2024). On g- Integer Representation with a Special Sequence Turkish Journal
of Science, 9(1), 80-90.



S. Halic1, O. Deveci, S. Ciiriik /TJOS 9 (1), 80-90 81

J» and j, are nth Jacobsthal and Jacobsthal-Lucas numbers:

1 .
Jo=3 @ =D, o= "= (D), ®)
Since quantum calculus plays an important role in physics, number theory, and other areas of mathematics,
we consider two different types of bicomplex sequences with components involving quantum integers.
Therefore, we have briefly summarized some properties of quantum integers. For any integer number #,
the equations [n], and [-n], are satistified.

n-1 n
[, =Y [-nly==) " (4)
k=0 k=1

Where [1], = 1 and [-1], = —% . The number [-n], is also called a g— integer [6]. Also, —¢"[-n], = [n],,
n < 0, is satisfied. Considering the ring of integers, in case 4 = 1, the quantum integers turn into known
integers. The following algebraic operations are frequently used in quantum calculations, with m, n being
natural numbers.

[m +nly = [mly +q" [n],, [mn]y = [m]g[n]g. (5)

Elements of second-order integer sequences and g—integers can be converted to each other. Therefore,
studying g—integers has great advantages in terms of computational ease and usability. An example is the
work of Pashaev and Nalci’s Golden quantum oscillator, and Binet-Fibonacci calculus[11]. We can write
down some of the work done using these numbers. In [7], the authors have derived families of multilinear
and multilateral generating functions for some polynomials based on g integers. Akkus and Kizilaslan have
examined the quantum approach to Fibonacci quaternions in a study they conducted in 2019[1]. Kome
et al., on the other hand, have made a quantum calculus approximation to the dual bicomplex Fibonacci
numbers[9]. In [8], the authors have studied g octonions and gave Binet formulas, exponential generating
functions. In the studies performed in the references [10, 12], the authors examined in detail the arithmetic
operations in bicomplex space and the structures of bicomplex functions.

In this study, we created a different number sequence using g—Jacobsthal bicomplex numbers. In addition,
we made it easier to calculate some identities, which give the basic structures of integer sequences and
occupy an important place in the literature, by using g calculus.

2. Bicomplex sequence with coefficients from g—Jacobsthal numbers and its properties

In the studies performed in the references [1, 9], the authors examined the g—Fibonacci bicomplex
numbers and duals in detail.
In this section, we give bicomplex numbers using the nth g-Jacobsthal and Jacobsthal-Lucas numbers.
These numbers are denoted by J, (a,9) and j, (@, q) and are as follows.
a'-p"_a"-(qa)" 1

a—-f  a-gqa Ea”[n]q ©)

]11 (0(, q) =

and
ju(a,q)=a"+p"=a"(1+4"), (7)

respectively. In here, « = 2 and g = =L

Now, using the g—Jacobsthal and Jacobsthal-Lucas numbers, respectively, let’s define the nth terms of two
different bicomplex number sequences as follows.

BCJ, (a,9) = %a” {[n], +ia [n+ 1], + jo? [n + 2], +ij a® [n + 3], 8)

d
" BCj, (a,q) = " {(1 +q") +1i 0((1 + q”“) +ja? (1 + q”+2) +ijo’ (1+ q”+3)} . )
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We can also write the following equation as a separate notation for this sequence.

[2n]q _n+1[2n+2]q _n+2[2n+4]q “n+3[2n+6]q
l, ' e, Y w2, YUY sy,

BCj, (a,q) =a" (10)

We have listed below some of the equations provided by the general terms of the sequences we have just
defined.

BCJ, (e, q) = BCJy (a,q) = 1L—q {Q (04"_1 +a"! ) -y (a”‘lq” + a’"‘lq’”)}. (11)
BCjn (a,q) £ BCj (a,q) = a(a" £a™) -y (a"q" £ a"q"). (12)

am+n—2 )
BC) (o ) BCn (4,0) = 7~ (@ -q"ay —q'ay+q"y}. (13)
BCj (@, 9) BCjn (@, 9) = ™" (& + q"a y + q"ay +4™"y?}. (14)

In the following Corollary, we have given some basic equations that the general terms of the sequences we
have examined provide according to the standard basis {1, i, j, ij } .

Corollary 2.1. The following equalities related to numbers BCJ, (o, q) and BCj, (a, q) are satisfied.

BCJ, (a,49) + BC ], (@,9) = 2], (@, 9). (15)
BCJ, (@,4) + BC ], (@,9) = 2{Ju (@) +]j Jus2 (@, 9)} (16)
BCJ, (@,4) +BC ], (@,4) = 2{Ju (@,q) +i Jusr1 (@, 9)}. (17)
BCJ, (a,q) + BCY J,, (a,q) = 2{Ju (,9) +ij Jus3 (a,9)} . (18)

BCjy, (a,q) +BC ju (,9) = 2ju (,9) . (19)
BCji (a,4) + BT jiu (@,9) = 2{ju (@) +]j jus2 (&, 9)}. (20)
BCji (@,9) +BC jiu (@,9) = 2{ju (@) +1 jus1 (a,9)} 21)
BCj (a,9) + BCY j, (@,9) = 2 {ju (@,9) +ij juss (@, q)} - (22)

As it is known, one of the most commonly used formulas in the analysis of integer sequences is the Binet
formula. This formula is widely used in practice as it characterizes the elements of the sequence.

Theorem 2.2. For the bicomplex q— Jacobsthal sequences, Binet formulas are
a-q'y
1-q |

i) BCJ, (a,q) = ™! (

ii) BCj, (o, q) = &" (Q +q"y ) :

Where
a=1+ia+ja®+ija’, y=1+iaq+j(ag)?® +ij (ag)’. (23)

Proof. i) From the equality (8), we write

BCJ, (a,q) = %a" {[n]q +ia[n+1],+ja’[n+2], +ija’ [n+ 314},

an
BCJ, (a,q) = 5

2(1-9) {a-g)+ia(l-g"")+ja?(1-9") +ija’ (1-4")],
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a . . .. (aq)” . . 2 .. 3
BCJ, (a,q) = l+ia+ja®+ija®)+ 1+iag+j(ag)” +ij (ag) ).
(@,9) 2(1_0])( ja? +ij o) 2(1_67)( q+j (aq)” +ij (ag)’ )
If we substitute the values of the alpha line and beta line in the last equation then we get
a-qvy
— i1 —
BCJ,(a,9) =« ( =g ]

which completes the proof.
ii) From the equality (9), we can write

BCju (a,q) = a" {(1 +q")+1i a(l + q"”) +ja? (1 + q’“z) +ija® (1 + q”+3>},

BCju (a,q) = 22" (1 +ia+ja? +ija’) + 2(aq)" " (g +iag® +j a’q’ +ij a’¢*).

If necessary operations are performed on the last equation, the following equation is obtained, which
completes the proof. So,

BCj, (a,q) =a" (g+ q"z).
We would like to point out right away that if the values «, g are substituted in the above last formula, then
the Theorem 2.4 in [5] is obtained. [

The algebraic operations and relations between the elements of these sequences that we examined are given
in the Corollary below. We noted that g calculus is very useful in reviewing all the properties involving
sequence elements.

Corollary 2.3. For the numbers BC], (a, q), the following equalities are satisfied.

BCJy+1 (a,9) + BCJ, (a,9) = a"a. (24)
n-2
BCJu (o, q) + BCJy-1 (a,9) = f_ p {SQ -29"y } (25)
n—1
mummﬂyBQmeziﬂ@+w@y (26)
a" 2y
BCJ11 ((X, Q) - BCJ,1 (a/ Q) = 1= ; (27)

Proof. 1t is sufficient to see that only one of these equalities is true. For this purpose,

BCJ1 (@, q) + BCJu-1 (a,q) = lqu {a”’zg (a2 + 1) - a”’zq”*lz(l + anz)} ,

n-2

BCT1 (4,0) + Bt (4,0) = 7 —

{5a - 24"y |
which is desired. O

Corollary 2.4. For BCj, (a, q), the following equalities are satisfied.

BCju1 (a,9) + BCjy, (a,9) = 3a"a. (28)
BCjns1 (@, q) + BCju-1 (@, q) = "' (5a - 29"y). (29)
BCju+1 (a,9) — BCjy (a,9q) = 2a" (g - q”)_/) . (30)

BCju11 (@, 9) — BCju—1 (a,9) = 3¢" 'a. (31)
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Proof. 1t is sufficient to see that only one of these equalities is true. For this, we write

BCji (a,q) + BCju (a,q) = & 'a + (ag)™ 'y + a"a + (ag)"y,

BCjus1 (a,q) + BCj, (o, q) = a"a(a + 1) + (aq)"y (aq +1) = 3a"a.
0
The relations between the terms BBCJ, and BCj, are given in the following Theorem.

Theorem 2.5. For BCJ, (a,q) and BCj, (, q) the following equalities are satisfied.
i) BCy41 (a,9) + 2BCJy-1 (a2, 9) = BCjy (a,9) -
i1) BCjy41 (a, q) + 2BCjy—1 (a0, q) = 9BCJ, (v, q) .
Proof. i) One can get
n—1 _ n-1 2
@l (a+1) = (ag)" "y (1+ag?)
1-¢

BCJ+1 (a,q) + 2BCJ,-1 (@, q) =

2{3&”‘@ - %(aq)”_ly}
3 7
BCus1 (a,) + 2BCJot (,0) = 2"l = a7 (@)Y},

BCJ1 (@, ) + 2BC1 (a, ) =

BC] 1 (@, ) + 2B, (@, ) = a"a + (ag)"y

and
BCJy+1 (@, q) + 2BCJ,-1 (a,9) = BCjy (a,9) -

ii) For the BCj, (a, q), we write

BCjins1 (@,4) + 2BCjon-1 (@) = a"™'a + (aq)"™'y + 22" a + (ag)"™
BCju41 (a,9) + 2BCj,1 (0, 9) = a"a (@ +1) +a"g"" 1(1 + aqz) ,

BCju+1 (o, q) + 2BCju—1 (v, q) = 62" (g - q"z),
BCjy1 (a,9) + 2BCj,—1 (a0, 9) = 9BCJ, (a0, 9) .
So, the proof is completed. 0O

4

Vs

84

The exponential generating function for the q— Jacobsthal and g— Jacobsthal-Lucas bicomplex numbers are

given in the following theorem.

Theorem 2.6. For the bicomplex numbers BCJ, («,q) , BCjy, (a,q), we have

. - n 1 N o
1);1802111(04,0])% = 2(1—_’7)@6 —y e )

i) i BCj, (a, q)z—:’ = (g e+ 14 e"‘"") .
n=0 ’
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Proof. i) In the generating function definition if we use the Binet formula of the BCJ, (¢, ), then we get the

following equalities.
b n i a— qny n
X _ n-1_" — x_
Y BC () = ) e _

n=0 n=0 1_q nt’

3 8y X LN e
;IBC]n(a,q)n! B 1—qnzzéa n 1-g ;a T
. ﬁ_ 1 ax _ . agx
WZ::;IBC]”(a,q)n! = 30-0 (ge ye )

ii) We calculate the exponential generating function for the numbers BCj, (a,q) as

n

2 ]BC]n (0(, q)fl—:l = Z{ a”c_y + (Oéq)" Z} %/
n=0 n=0
Y BCj, (a,q>j‘1—’f =a) o . +y ) (g %
n=0 n=0 =0

i]BCjn (a, q)i—:’ = (g e+ y e“qx).
n=0

:|><

Thus, the proof is completed. [

In the next section, we give some fundamental identities involving the terms BCJ, (a,9),BCj, (a,4) and
are related to each other in this study.

3. Some fundamental identities of involving the terms BC]J, (a, q) and BCj, («, q)

First, using q calculus we give the Cassini’s identity which has an important place in the literature for
Fibonacci-like number sequences.

Theorem 3.1. For n € Z*, we have

az(n—])gz qn (2 —q- q—l)
(1-¢g)° '

ii) BCjyi1 (@, 9) BCju-1 (@,q) — BCj:* (a,9) = aa y 4" (g + 97" = 2).

i) BCJ .41 (a,9) BCJ,-1 (a,q) — BCJ,? (a,q) =

Proof. i) From the Binet formula, we write

aZn—Z

(1-9)

LHS =

. {22 _gzqn—l _gzqn+1 +q2nzz _gz +2£_¥)_/q” _q2nzz}’

2= qun (2 —q- q—l)

BCJu41 (, ) BCJ,-1 (a,q) = BCJ, (a, ) = 5
1-9)

ii) The proof of this equality can be done in a similar way. [

In the following theorem, we give the Catalan’s identity for the g—Jacobsthal and g—Jacobsthal-Lucas
bicomplex numbers. The Catalan’s identity, which is a generalization of Cassini’s identity, was given by
E.C. Catalan(1814-1894).
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Theorem 3.2. Forn € Z* and n > r, we have

D(Z(n_l)g)/ qn (2 _ qr + q—r)
1-g) '
i1) BCjusr (a,9) BCjur (@, 9) = BCfy (a,q) = a*'a yq" (4" + 97" = 2).

i) BCJ,+ (a,q) BCJ -, (@, q) — BCJ2 (@, 9) =

Proof. 1)

20=1)

(1-q)

n+r

LHS =

+ ¢ y -a? +2ayq -y 2}

(@ —ayg —ayqg
So, we obtain
2 Dayg" 2 —q" +q7)

BC,sr (@, 4) BC,-r (a,9) ~ BLJ2 (a,4) = (1-q7

ii) Using a similar method, we get

LHS = (" + (ag)""y) (@ "a + (M/)”_ry) ~(a"a+ (ag)'y),

21 n+r .2 2n 2

LHS = a®'a® + a*'¢""a y+a®qay+ (ag)™y -2a*"q"ay - (qu)znyz,

BCjnsr (@, 4) BCju-r (@, 9) = BCj” (v, q) =aq"ay (@ +q"-2).
Note that the last equality gives the Catalan’s identity for the g— Jacobsthal-Lucas bicomplex numbers.
Thus, the proof is completed. [J

Specifically, in Theorem 3.2 if we write r = 1, then we get the Cassini identities for the terms BBCJ,(«, ) and
BCj,(a, q).
In the following Theorem, we give the d’Ocagne identity involving the terms BCJ,(«, q) and BCj,(«, g).

Theorem 3.3. For m,n € Z*, we have

o= 1

i) BCw(a, )BC] 1 (e, q) — BC](a, )BC (e, 9) = a )2 =(@-1@
i) BCjm(at, ))BCjps1(a, 9) = BCju(@t, )BCjmri(a,q) = " a y (1 -9) (g" — q")-
Proof. 1) Using the Binet formula in the LHS, we obtained

o q V ) qn+1y . g_qnZ . a-— qm+1
o 1= 7 o 1= q - 1- 7 o 1—_q .

m+n— 1

From this fact

o
BCJw(a, q) BCu+1(a, q) —BCJu(a, q) BCms1(a, q) = ﬁ (a-D@" -

can be written. Thus, the proof is completed.

ii) The value BCj,(«, 9) BCj.+1(a, q) — BCj,(a, q) BCju11(a, q) is equal to this

(amg + (aq)"')_/) (oc"“g + (aq)"”)_/) - (a”g + (aq)”)_/) ((xm“g + (aq)m”)_/) :

BCjm(, q) BCjns1(a,9) = BCju(t, q) BCjmri(a,q) = ™" y (1-4) (g" - q").
Thus, the proof is completed. [
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Theorem 3.4. For the terms BCJ,(a, q) and BCj,(a, q), we have

m+n-3

(1_q)2(A+oz B).

i1) BCjy-1 (a,9) BCj (t,9) + BCj (2, 9) BCjms1 (@, ) = @™ (C + a?D).

i) BCJ,-1 (@, q) BCJ (, q) + BCJ, (o, 7)) BCJ o1 (v, q) =

Proof. i) For m,n € Z*, LHS of equality is as follows.

el ) o (a-d"y AN gy
=a —— | — |+« a ,
1-q 1-q 1-q 1-q

a’n+n_3 n— m+n— m m+n
LHS = 5 (=@ +qDay+q"" ) +a®(a® - @'+ qay +q"")?)).
We get the following equality by doing the necessary calculations.
qmn=3 )
BC]u1 (o, q) BCJw (@, q) + BCJ, (@, 9) BCJi1 (a,q) = (A+a’B),

1-q)

where,
m+n—1 2

A=~ (@"+q" Nay+q

Y

m+n+1, 2

B:a2_(qm+1+qn)gz+q y

ii) For LHS, we calculate

LHS = (a" Ya + (ag)"™" )(a a+ (aq)” ) (cx”g + (aq)"z) (ozm“ac + (ag)™y )

LHS = o™*"- 1{(& +(q +qn 1)a7/+qm+n -1 2)+0€ (a2+(qm+1+q )ay+qm+n+1 2)}
Then, we get
BCjy1 (a,4) BCju (a,9) + BCjy (@, 9) BCjimsr (1, 9) = " (C + a?D),
where
C= 0( +(q +qn 1)ay+qm+n 1 2 D =a +(qm+1 n)gy+qm+n+17/2.

Thus, the proof is completed. []

In the next Theorem, we give Vajda’s identity, which is a generalization of the Catalan’s identity and has
an important place in integer sequences.

Theorem 3.5. Forn € Z*, we have
aZ(n—1)+i+j ng 4 4
i) BCJ1i (a, CI) ]BC]n+j (a, Q) - BCJ, (a, Q) IB(E]n+i+j (a, Q) = W (q] - 1)(ql - 1) .
i1) BCjusi (,4) BCjins (@, 9) = BCj (t, ) BCjivis; (2, 9) = 2 *ig"a y (1 - ') (g - 1).

Proof. i) For LHS, we can write

Lt = ey [[ETTTL) (€20 (a-a'y)(a- ™y
=a 1-g 1-q 1-q = ,
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e Q2D g (g 41— g~ )
(1-g) '

Q2= D+irjgn o ‘ ‘
LHS = T)z_ (9/ - 1)(¢' - 1) = RHS.
ii) BCjy4i (a, ) BCjnsj (a,q) — BCjy (a, ) BCjnsisj (a0, q) is equal to this.
(a"*a + (ag)™y) (@ + (aq)""y) = (a"a + (aq)"y) (@™ e + (ag)"*™y).
If we make the necessary calculations and arrangements, then we obtain

BCjusi (@, 7) BCjur; (@, 9) = BCju (@, 9) BCjusiv (@, q) = ™ *g"a y (¢ +4' - 4" = 1),

BCjwsi (@, 4) BCjus (,9) = BCjo (@, 4) BCiusiv (,9) = &g a y (1 -4/ - 1).
Thus, the proof is completed. [

Another generalization of the Catalan identity is Gelin-Cesaro identity. In the following Theorem, we give
the Gelin-Cesaro identity involving the terms BCJ,(«, ) and BCj, (a, g).

Theorem 3.6. Gelin-Cesaro identities involving the terms BCJ, (e, q) and BCj, (o, q) are follows.

n—-1

4
i) BCJ,-2 (@, ) BCJy-1 (@, 9) BC /11 (@, 9) BCuv2 (@, ) — ]BC]n4 (a,q) = ( 2 ) (K1 +Kp).

T-9q
i) BCjn—2(a, ))BCju-1(at, )BCjisa (@, 9)BCjnsa(a, 9) = BCju (@, q) = —a*(Ky - Ky).

Where
Ki = ayq" 2@ + 1) (-¢* - ¢ + 47 - q - 1), (32)

2=y <q6+q4—4q3+q2+1). (33)

PTOOf. l) ]BCIH—Z (CY, q)lBC]n—l ((X, q)lBCLHl (0[, q)IBC]THZ(a/ Q) - ]BC],,4(0(, Q)

= (f 11__:,)4 {la-a2y)(@-g7)(@-1) (@=a") - (e-a7)'}.

—1\4
an 3 n+2 3 n+1 2.2 2n+3 3 n—1 2.2 2n+1 3 _3n+2 3 n-2
=( ){—g + a2 = 2Pyt + 2P - P - atyg

+gzz2q2"—1 _ C_thf”” +gzzzq2n—3 _ gz3q3n—l —Qflf"_z n 4g3zq" _ 4gzz2q2" " 4gz3fi3n}~

If we do the necessary arrangements, then we get

a1 \4
) (f - ;) fayg? (@ + 720" (0* = +48° =g = 1) + V7" (4" +¢* — 40> + 47 + 1))

After sum and simplification, the following equation is obtained.

n—-1

4
BCJy-2(t, )BCJ-1(a, )BClus1 (@, PBCur2(at, ) = BC (@, 9) = (a ) (K1 +Ky).

1-¢g
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ii) Let us now show the truth of the second claim of the Theorem.

LHS = (" 2a + ()" 2y) (0" 2 + (ag)"y) ("2 + (ag)"™'y) (a"a + (ag)"%y) - (a"a + (aq)'y),
LHS = 0(4”q"_2g3y (q4 + q3 - 4q2 +q+ 1) + a4”q2” —3a2y? (q + q - 4q + q + 1)
+a¥1gPn=2gy (q4 P-4 g+ 1)/
LHS = a*" {gzqn—z(gz +qu2n)(q4 + q3 _4q2 +q+ 1) + an -3 27/2 (qe Jrq4 —4113 + qz + 1)}
From the last equality, we get
BCj—2(ct, 9)BC -1 (ct, 9)BCjins1(et, ) BCjnsa(at, ) — BCju*(a, 9) = —a*" (K1 — Ky).
Thus, the proof is completed. [

With the help of the classical binomial definition, g—Jacobsthal and Jacobsthal-Lucas bicomplex numbers
are given in the following Theorem.

Theorem 3.7. For nonnegative integer n, we have

i) Z( ) a[Z] Zq)"_k]BC]k (a,q) = BCJa (a,9) -

i) )| (Z)(a[21q>"<—a2q>”"‘1Ba:jk<a, q) = BCjau(a, q).
k=0

Proof. i) From the Binet formula, we write

LHS = Z() a1+ "kk {
>§:() o) (- 20.¢z;:() o] ()

Thus, we get

n

Z (Z)(O‘[Z]q)k(—azq)”‘k]BC]k (a,q) = a®"! {Q__ _

k=0

ii) For the second equality we can use the same method.

LHS = Z() a(1+q)(-a?)’ k(akc_w(aq)"z),

LHS = a (g@auwﬁpfﬂﬁ+z”(@pauﬂﬁpfﬂ”.

Thus, we get

n

Z (Z)(a[Z]q)k(—azq)n_leCjk (a,q) = a®a + (aq)znz = BCj2 (a,9).

Thus, the proof is completed. [
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4, Conclusion

In this study, we investigated bicomplex numbers whose coefficients are g—Jacobsthal and g—Jacobsthal-
Lucas numbers. We obtained some fundamental and important properties of newly defined numbers. And
then, we calculated the Binet formula for these numbers. In addition to this, we derived some basic
identities for these numbers, such as Cassini and Catalan identities, which have an important place in the
literature.
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