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Abstract. In this study, new inequalities have been obtained by employing a generalized fractional
integral operator which generalizes some fractional integral operators existing in the literature. In the initial
step of the study, certain general properties related to Griiss type inequalities were discussed, followed
by establishing a hierarchy among some fractional integral operators already existing in the literature.
In the main results section, new lemmas and inequalities of Griiss type have been obtained using the
aforementioned fractional integral operator.

1. Introduction

Inequalities have become a highly sought-after in the last decades due to their increasing utilization in
various domains and their capacity to introduce a different perspective into science. One of the most crucial
inequalities using in this field is the following which is called Griiss inequality (see [1]). Griiss proved that,
for two integrable functions f and g defined on [g, ] :

1 b 1 b 1 b
‘m f f(x)g(x)dx—(m f f(x)dx)(m f g(x)dx)

HOBENUASE M

IA

holds where
®; < f(X) <, and v, < g(X) <V, @,D,¥V,¥V,eR. (2)

The well-known Griiss inequality is denoted as inequality (1) in this study. Scholars from all around
the globe have shown significant interest in it. As an example, Elezovic et al.[2] formulated a series of
Griiss-type inequalities associated with the Chebyshev functional within function spaces denoted as L,
with weight functions and exponents. Liu and Ngo [3] introduced an Ostrowski-Griiss type inequality on
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time scales, consolidating analogous versions from continuous, discrete, and quantum calculus. Dragomir
[4] derived precise Griiss-type inequalities for functions exhibiting bounded variation when combined
with self-adjoint operators in a Hilbert space. Additionally, Dragomir [5] derived a number of Griiss-type
inequalities for complex integrals, taking into account various underlying assumptions. One can see [6] to
see more inequalities of Grtiss type.

Definition 1.1. ( [7]) The function f : [u,v] — R is said to be convex, if we have
fAt+ (1 =) < Af(h) + (1 = A)f(t2)
forall tyt, € [u,v] and A € [0, 1].

In recent years, a multitude of generalizations, variations, and extensions of this inequality have been
published, stemming from the concept of convexity ([8]-[9]). Over the past few decades, fractional calculus
has witnessed significant growth in popularity and importance, primarily owing to its applications across
various diverse and extensive fields. Recently, there has been a growing interest in the utilization of
fractional integral operators to reinvigorate well-established integral inequalities. For example in [13] the
obtained results on inequalities are demonstrated through an illustrative example, accompanied by 2D
and 3D graphical representations. Also in [14], Abdeljawad et al. obtained an extension of Schweitzer’s
inequality to Riemann-Liouville fractional integral.

Initially, let’s review the Riemann-Liouville fractional integral, as defined by [10], which will have
continued significance in the context of this paper.

Definition 1.2. Let f € L1[u,v], the Riemann-Liouville integrals I}, f and I, f of order a with u > 0 are defined by

I f(x) = ﬁ f (x = 0)* 1 £(6)dS, x> u, (3)

a — L ’ _ a1
IT f(x) = (@) ‘fx O =x) " f(0)dd, x<w. 4)
Here T(a) is the familiar Gamma function and I°, f(x) = I°_ f(x) = f(x).

Definition 1.3. ([10]) Let h : [a,b] — R be a positive monotone and increasing function on [a,b], and b’ (0) is
continuously differantiable on [a, b] . Then I, w (x) and I, w (x) fractional integrals of w with respect to the function
hon [a, b] of the order a > 0 are defined by

H(0)w (5)
d
im0 (1) = I’(a)f [h(x) - h ()] o x>a ©
a I (6) w (5)
Iw(x) = F(a)f 0 0) — h ] adé, x<b (6)

Notice that for h(x) = x, fractional integrals (5) and (6) become Riemann-Liouville fractional integrals
(3) and (4). Conversely, when h(x) = Inx, fractional integrals (5) and (6) are transformed into Hadamard
fractional integrals.

Definition 1.4. ([12])Let f € L[u,v], the generalized fractional integral operators I+ f and I~ f are defined by

b (x—0
Iu+¢f(x):f qbix_é)f(é)dé, x>,

Lo f () = f ) qjéé__xx) FO)d5, x <o,
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where a function ¢ : [0, 00) — [0, c0) satisfies the following conditions:

1
\fféhé<w )
0
1 ¢(0) 1 0
'ITSMSTL fOI'ESESZ, 8)
qbé(f) < TZ(PG(S), for 0 <&, ©)
<P£(25> <1>9 <Ts1E-06)| ¢5(f), for%< g <2, (10)

where T1 T, T3 > 0 are independent of 6,& > 0. If ¢ (£)EY (a > 0) is increasing and ¢é§) (B>0)is
decreasing, then ¢ satisfies (7) to (10).

Definition 1.5. ( [11]) Assume that h : [a,b] — R be a monotone, non-negative and increasing function on [a,b].
Also let its derivative function be continuously differentiable on [a,b]. Furthermore assume that w : [a,b] - R
be a positive and integrable function and the function o satisfies (7) to (10). Under these conditions, ’;J;ij (x) and
s 1% w (x) fractional integrals of w with respect to the function h on [a, b] of order o > 0 are defined by

o o(h(x) = h(5)),, a_
I w(x) = T (a) f 00 o) 1 (0).(h(x) = h(0))* tw(d)ds,  x>a, (11)
and
. o(h(d) - h(x)) , .
bt w(x) = T (a) f "E) = 1 (6).(h(5) — h(x))* w(d)ds, x<b. (12)

The general operator given above reduces to usual Riemann integral, k-Riemann-Liouville fractional
integral, fractional integral operator given at Definition 1.2, fractional integral operator given at Definition
1.3, fractional integral operator given at Definition 1.4, Hadamard fractional integral, etc. under some
special conditions.

The motivation of this study is to obtain general inequalities which are valid for some fractional integral
inequalities given above under special selections. Also obtaining results with respect to another function is
motivating because they are likely to produce very valuable results.

2. Main Results

In this part new lemmas and theorems are obtained using new generalized fractional integral operator
given in (11) and (12).

Theorem 2.1. Assume that f and g are two positive integrable functions that satisfy the condition (2) on [a, b].
Furthermore, let u and v be two nonnegative, continuous functions on the interval [a, b]. Then, the following result
holds:

(I E TR fR)E) + E L0 ufg)R)
~( I OG0 = G0 AL 1g)(x)
< G E L)@ 1) (P2 = V). (13)

at Im at " ho

where a1, az, k1 ko > 0.
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Proof. Let Z(, p) be defined by
Z(t,p) = (f(0) = f(eD(g() = 9(p)), VYT, p €la,b]. (14)

Multiplying both sides of (14) by u( LD () () ~ W) T v(p)

1
DRl @ W)

szr;; ) U%;)__h]iig))h' (p)(h(x) — h(p))%_land integrating the obtained inequality with regard to 7 and p

from a to x,respectively we can get
ror 1 o(h() -h()). oy
[ 40 Tk 001 = (o)

1 o) = hp) .
Ty ) —Tip) " P —h(p)® 2, p)dvdp

= (n0@EERf00) + CLEo) 01 fg)(x)
~(G I AW E v = GLEe )G g)(0)- (15)

According to the condition(2), we have

xv(p)

|1Z(z, p)| = [(f() = £(p)||(9(2) = 9(p)| < (@2-P1)(W2 — ¥1), V7, p € [a,]] (16)
Combining(15) and (16), we obtain that

GBI )G vfg)x) + E IR0 E I ufg)(x)
P A E R - G NEE i)

1 ohx) ~ h(0),
f f LT @ e i
L olhx) - k(o))

kT, (@) h(x) — h(p)
xH (p)(h(x) = h(p)) & ™ |Z(x, p)| dzdp

rl h(x)—h , a_
ff”(T)klrl o(h(x) (T))h(’[)(l’l(x)—h(’[))kl Lo(p)

IA

x(h(x) = h(T) T v(p)

IA

(1) h(x) —h(7)

1 o(h(x) - h(p))

koI, (a2)  h(x) — h(p)

= (M) )G I20) ()@ D1) (Vs — W),

at"ho at " ho

I (p)(h(x) — h(p)) 2 ™ (D by ) (W — Wi )drdp

(17)
This ends the proof. [J

Theorem 2.2. Assume that f and g are two positive integrable functions that satisfy the Lipschitz condition with
constants Ly and Ly. Furthermore, let u and v be two nonnegative, continuous functions on the interval [a, b]. Then,
the following result holds:

(L@ EL20f)@) + ELZ) G uf)®)
~( OG0 = G LEe AL ug)(0)
< Ll ((B17u) () (B1202) (v)
+(E120) @) (S10ui?) () - 2 (10 i) (o) (2 1201) (x) (18)
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Proof. Based on the conditions outlined in Theorem 2.2, for 7, p € [a, b] it can be derived that

|(f(D) = F(p)| < La |t — | <Ly

(19)

which implies that
2w, )] = |f(0) = ()] [9(0) — 9(p)| < LiLa(z ~ p)*. (20)
Combining (15) and (20), we get that

[ [ 0 s S @0 = ) o)

k(1) h(x) = h(7)

1 a(h(x) = h(p))
kal'w,(a2)  (x) = h(p)

C( h(x) —h / o
[ o0 s S e @00 = ) o)

1 (0)(h(x) — h(p)) & " |Z(x, p)| dedp

IA

k(@) h(x) = h(1)

1 o) —hip)) . . -
koTh, (a2)  h(x) — h(p) h (p)(h(x) = h(p)) " LiLa(t — p)°dzdp

= LiLa((810) () (B 17207) (x)

+(B120) @) (S 1mui®) (0 = 2 (S 10i) () (2 1020i) () 1)
This end the proof of Teorem 2.2. [

Theorem 2.3. Given that f and g are two positive integrable functions satisfying conditions f' € LP [a,b],g" €
L9a, b] and let u and v be two nonnegative continuous functions defined on the interval [a,b], where p,q,r >1
with 1/p+1/p’ =1,1/q+1/q’ = 1and 1/r + 1/¥ = 1. Under these assumptions, the following weighted fractional
integral inequality is satisfied:

2B Iy Iz;ufg @) = I uf) )G ug)(x)|

h(x)-h / u
< IF ol f f MO s T () = )~ up)

ki (0(1)

1 a(h(x) —h(p)
kiTi, (1) h(x) = h(p)

H (p)(h(x) — h(p)) & ™ |x — p|7 ¥ dudp.

(22)
where a1,k > 0.
Proof. Multlplymg both sides of (14) by u(7) 1 k1Fk o) hh(% 2] D iy’ (1)
X(h(x) — h(T))k1 u(p) klrkl @ g%x hpéf)))h (p).(h(x) - h(p))kl 'and integrating the given result with respect

to T and p from a to x, we can state that

([ 1 ol -h(),, o
J [ 50 g i 0 - ot

L 1) R
T @ e i) @) = o) 2w, pedp

= 2(ErwEEIufe)x) - G ug)(x))

(23)
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On the other hand from (14), we have

Z(t,p) = f f F(0)7'(9)d0d9, V1, p € [a,b]. (24)

PP

By employing the Holder inequality, we obtain

L v L .
(@ = f| <|t=p["| | |F©F d6| and |g() - g(p)| < |z~ p|* ’(6)1“d6| (25)
Combining (24) and (25), we get
% ¥ P
|Z(t,p)| < |t =p|7" f(f @) a6|’ do|’ (26)
According inequalities (23) and (26) we can write
k] (051 k1 (23] _ k] (051 k] (051
(J,m YOG ) = G uf) )G ug) ()|
1 o) =h() o
f f ) o oy et (0H8) =) atp)
a a
1 o(hx) ~h(p) . woy ybed
h (p)(h(x) = h(p))" |t —p|*
BT ) —gp) " PO 1O =
; ;
dG‘ ‘ d@‘ dtdp . (27)
p
Applying the double integral Holder inequality(27), we obtain
k1 (o4 k] (5] k1 (o5 k1 (o5
2|E ) E I ufe) () — I uf) I ug)(x)|
f f () ey SRR (®)(h(x) = (D) u(p)
a o) a_ L+l v
X BT Lx? MV (p)(h(x) ~ hp) " [~ pl* P dedp
[ (h(x)—h()) 21 ’
I[ W) 5 e ! (DGE) = h(T) T u(p)
X aa ,
o(h(x)— ’ a_ T+l |t , T
X g e B (0)0x) = k)™ o= p[7 7 | [T]g @) do| " drdp
(28)
Using the following properties
1 1
P e ! ’ q a m9
do| <|If'IIb and f 7)o <lgId (29)
P
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then (28) can be rewritten as

2|E )G I ufe) () — G uf) ) C I ug) ()| (30)

[y

171, 100y S50 10) - 1) o

a(h(x)~h(p)) 1.+ a_q R
Xt o (0~ o) [ pl 7 ddp

LU

o] X T ’ a._
gl f f () fren e h (O(h(x) = h(D) " u(p)

ahx h a_q L+d
Xkll“,:(al) ;z(gc h((pf;))h(p)(h(x) h(p))*n )T—p|" v dtdp

17 gl f f U0 S () — h) ™ o)

X

K (@1)  h(x) = h(T)

1 a(h(x) = (p))

X Tetan ) i) " P = h(p) e~ p|7 ¥ dudp

which completes the desired proof. [

Theorem 2.4. Given that f and g are two positive integrable functions satisfying conditions f' € LP [a,b],q" €
L91a,b] and let u and v be two nonnegative continuous functions defined on the interval [a, b], where p,q,r >1
with 1/p+1/p’ =1,1/q+1/q’ = 1and 1/r + 1/¥ = 1. Under these assumptions, the following weighted fractional
integral inequality is satisfied:

GBI G0 ) () + G I20) ) I ufg)(x)
~GLauf) x><§zfz;vg><x> (10N ug))

’ ’ 1 G(h(.X')—h(T)) ’ %71%71
< I Nl l f f ) s S o (00 = o)

1 o(h(x) - h(p))
kol'k, (a2)  h(x) — h(p)

xv(p) (H (p)(h(x) = h(p)) & [z = p|7 ¥ )dedp

(31)
where a1, ap, k1 ko > 0.
Proof. Combining (17) and (26), we get

<’;11,f:; (x)(’;iIZ;vfg)(X) + (53 I,‘j;v)(x)(’;il,‘f;ufg)(x)
wl,f;uf) D) 120g)(x) - G120 )0 E 1 ug) ()

hx) = (@), m_ h(x) - h
f‘fu(T)kll"l a(h(x) (T))h(T)(h(X)—h(T))kl o) 1 o(hx) - h(p))

k(@) h(x) — h(7) koTi, (a2)  hi(x) = h(p)

1 1
T P T q
F©) do 7| d@‘ drdp
P P

<K (p)(h() — h(p)) s e = p| 7T
(32)



C. Asak, M. Giirbiiz, /TJOS 9 (2), 162-173 169

By applying the Holder inequality for double integrals to (32) we get

<’;11;:;u><x ﬁil;‘;vfm(x) + <’;ﬂg; YO ufg)(x)
~C“ )@ 120g) (0 - @120 ) C I ug)(x)

1 ol —h) a1
lf J 0 ey 000 = o

a(h(x) - h(p)) . 3 2oy ged 0 ’
X—h(x)—h(p) H (p)(h(x) = h(p) =~ |t = p de‘ dep]
( (1 o) =) o
O o iy D0 = o

2O = B0 ¢ oy ihe) — o) e = d4q4w4 :

X—
h(x) = h(p)
(33)
Using the following (29) can be rewritten as (33)
I @ELRfR)@) + E LG uf)®)
~Gnu @G Lo ) ~ L NG ug) )
< 171l f f ”(T)‘kfrki(&l) ngh(gcx hh((:)))h (T)((x) = h(T))TlU(P)kzrkz(az) U?«h(ggh((pf;))
< (p)(h(x) = h(p)E ™ |z = p|? ¥ dedp
”g,“qffu(T)kll”k}(al)nghx? hFZ(T”h (1) (h(x) _h(T))ﬁ_lv(p)kszi(az) 621(%)—_;:%))
I (p).(h(x) = h(p)) = |t = ¥ dudp
U o 1 o(h(x) = () . e
- ||f ”p”g ”qffu(’t)klrk](al) h(x)_h(T) h (T)(h(x) h(T))
1 o(h(x)=hp) 2 14l
XV s i) gy (PG =) e = | )t
(34)

This concludes the demonstration of Theorem 2.4. [

Lemma 2.5. Consider an integrable function f defined on the interval [a, b] that satisfies condition (2). Additionally,
let u be a continuous function on [a, b]. Under these conditions, the following equality is valid

@G e - (G @) (35)
= (L@ - GLmuNE) (G - P )
~E IO I (@2 — F)(f — P1))(R).

where aq, az, ki ko > 0.



C. Asak, M. Giirbiiz, /TJOS 9 (2), 162-173 170

Proof. Given that f is an integrable function that meets the condition ®; < f(x) < ®, we have

(@2 = f(P)(f(T) = P1) + (P2 = f(D)(f(p) — D1)
(D2 = f(D)(f(7) = D1) — (D2 = f(P))(f(p) — P1) (36)
= fA0+ fAp) - 2f(p)f (1)

for any x,p,t € [4,b]. Multiplying both sides of (36) by u(p) klrk @ g;h((:;) hhpp)))h (p)-(h(x) — (p))%_1 and

integrating the obtained inequality with regard to p from a to x,we have

(F() = @) (P22 () = (LI )() + (@ = FONCIuf)(R)
—01 (1IN u)(x)) — (P2 — FO)(f(1) = PO ) (x) — CLINu(@ = F)(f = P1))(x)

= POERWE) + EIufAx) - 2f (G I uf) ().
(37)

Multiplying both sides of (37) by u(t) klrkl( ) hh(%) hhf)) W (7).(h(x) — h(’c))%_1 and integrating the obtained

inequality with regard to 7 from a to x,we have

(G ImuN@) = L) (@2 L) - (L))
(@20 L) = G HE) (CmHE) - o1 )
= (L (@2 = N = @) W L) = (@) (@2 = H(f = ) ()
= QIufECE W@ + CLE I ) - 26 I u @) I uf)(),

a+ ho at " ho at"ho a*t”ho atha

(38)
which gives (35). O

Theorem 2.6. Consider two integrable functions f and g on the interval [a, b] that satisfy condition (2). Additionally,
let u and v be two non-negative continuous functions on [a,b]. Under these conditions, the following inequality is
valid

(’;iIZ;u)(X)(’;HZ;ufg)(x) = GG ug) ()|
< (@ - D)W - W) (2 w)

(39)

a(h(x)— h(T)

Proof. Multiplying both sides of (14) by u(7) k1Fk R W (t)

X(h(x) — h(’c))kl u(p) klrk @ O%Cx hh(g;))h (p).(h(x) - h(p))kl 'and integrating the given result with respect
to T and p from a to x, we can state

[ h(x) —h , o
[ [0 o et @00 = )R (e

k(1) h(x) = h(7)

1 U(h(x) mp)) 5

= 2(Ermu) x)(’;u,j“;ufm(x) - (’;HZ;uf)(x G I ug) ().
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Utilizing the weighted Cauchy-Schwarz integral inequality for double integrals, we can express

2

J J 1) e s (@-0G) = ) o)
X S (P) () = W) ' Z(x, pdedp

X X a
J [ 40 ke S5 (0-000) = h(e) s u(p)
a a

X rr gt B (P)(h(x) = ()™ (f(7) - f(p)ddp

IA

fufummj(m) WMDY (7). (h(x) — h(x)) T u(p)
Xk SRS (p) () = h(p) ™ (9(0) - g(p)Pdedp
(GG — () ))
X (I @) I ug?) () = (LI ug)(0))?) .
Since (®; — f(1))(f(1)—- @1) > 0 and (¥5 — g(1))(g(r) - ¥1) 2 0, we have
GG (D2 = F)(f = P1)()
(I )G (P2 = 9)(g = Wh)(v)

Thus, from (42) and Lemma 2.5, we get

Vv
o

v
=

GG - (CmunE)
< (@0 ue) - GItuf)E) (Euf)E) - 0L )

I @G ug?)(x) = (G ug)(x)
< (W@ - CLtug@) (Gug)e) - G e) .
Combining (40),(41),(43) and (44), we deduce that
(G R ufe)e) - I g )
< (@@ - GLnuNE) (G - P )
X (oI (x) = I ug) () (G ug)(x) — P (LI u)(x).
Now using the elementary inequality 4xy < (x + y)?, x, y € R, we can state that

DI ) (x) = CLIM )N f)(x) — DI 0)(x))

< (@:- <I>1)((Z’+1§f;“)(x))2'
4P 00 = L)) (G ua) (0 = VG E)
< (@2 wnG )

O
From (45)-(47), we obtain (39). This completes the proof of Theorem 2.6.

171

(41)

(42)

(43)

(44)

(45)

(46)

(47)
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Lemma 2.7. Assume f and g are positive, integrable functions defined on [a,b], and let u and v are continuous
nonnegative functions on [a, b]. Then, the inequality given below holds:

( G @G f)(0) + G I E I uf o)) )2
—C I u )G90 = G120 )G ug)(x)
< (GLw@ELAE + GLRo)@E L) - 26 u)EE IR )(E)
X (I E)E L)) + GL2) @I ug) @) - 20 1 ug) (0 (G [2vg) ().
(48)
where o, az, ki ko > 0.

Proof. By applying the weighted Cauchy-Schwarz integral inequality for double integrals, it can be deduced
from (15) that (48) is obtained. [

Lemma 2.8. Consider f as an integrable function on [a, b], with u and v being two nonnegative continuous functions
on [a,b]. Under these conditions, the following equation is established:

(LG L2 )00 + L2 OG [ uf) ) = 26 [t uf)@) Lo ()
= (0l @) - CIunHE) (L)) - 01 (G120 w)

~E I E 0@, — f)(f - 1))

+(E I uf) ) - OE L)) (@22 I20) ) — L2 0f)())

- EI2o)@C I (D, — )(f - P1))E).
(49)

Proof. Multiplying both sides of (37) by v(t) =L oll3)—h(x)) by (7).(h(x) — h(T))%_l and integrating the ob-

kyT'k, (@) h(x)—h(7)
tained equation with respect to 7 from a to x, we have

(2120 (x) = D121 0)W) (@2 1) (x) — (LI f)())

—E L)) G L0 — F(f - P))()

+ (@222 0) () = (120 A))) (LI f) () — O (LI ) ()

—E 1)) IS u(@ — H(f - P1)()

G ) 2120 ) () + 2 120) @) LI uf2) () — 20 IR uf) () (2 1020 f) ().

at " ho atho at”ho at"ho atho at " ho

(50)
which gives (49) and proves the Lemma 2.8. [J

Theorem 2.9. Suppose that f, g are two postive integrable functions on [a, b] satisfying the condition (2) and let u, v
be two continuous nonnegative functions on [a, b] .Under these conditions we have

( GG f)) + (I 1 fg)(x) )2

~G NG L2900 = G Lo HEOGH 1g)(0)

< (@) - G uHE) (EL2oHE) - 01 ELR)()
+ (@2 120) () = G20 AE)) (G I up)E) - D1 EL L) ()
x (P I ) (x) =4 I ug) () (12 vg)(x) - Wi (2 120) (x)

+ (P22 120) () - GI20g) ) (I ug)(x) — Wi L L) ().
(51)
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where a1,Qqp, kl,kZ > 0.

Proof. Since (@, — f(7))(f(1)~ @1) = 0 and (W2 - g(7))(9(7) — ¥1) 2 0,

~( M) )E L2 0(D2 — f)(f - 1))

~B120) (0O IO (@, — f)(f — D))
0 (52)

IA

~G @) (I, - 9)(g - P))(E)

~E 1) 0O WY, - g)(g - W)()
0. (53)

IA

O

Applying Lemma 2.8 to f and g and using (52), (53) and Lemma 2.7, we obtain (51).
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