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A NTRU Type Cryptosystem Based on Circulant Matrices
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Abstract. In this study, NTRU cryptosystem is examined on circulant matrices. These matrix types have
been studied due to the rapid selection of matrices that will serve as private keys. Again, using some
interesting and important linear algebra properties of circulant matrices, the NTRU cryptosystem has been
studied in a different and original ring. Some results obtained place the NTRU cryptosystem on solid
foundations in algebraically.

1. Introduction

In 1996, NTRU was first introduced by J. Hoffstein, J. Pipher and J. Silverman in Crypto’ 96 [1]. Then
NTRU’s developers contributed to NTRU which is denoted as a ring-based and a public key encryption
method by making parameter optimization [2]. In 2003, they introduced NTRUSIGN [3], i. e., a digital
signature version of NTRU. In the same year, they with another team made a presentation which analyzed
decryption errors of NTRU [4]. J. H. Silverman published a technical report about invertible polynomials in
a ring in 2003 [5]. In 2005, J. H. Silverman ve W. Whyte published a technical report which analyzed error
probabilities in NTRU decryption [6]. Also, the founding team which published an article on effects increas-
ing security level of parameter choosing [7] has published related reports in the website www.ntru.com.

NTRU is quietly resistant to quantum computers based attacks as well as its speed. The basic reason of
protecting this resistant bases on finding a lattice vector with the least length and powerfulness of problems
of finding a lattice point closest to private key into a high dimensional lattice [8]. Unlike the other public
key cryptosystems, the sheltering structure of the NTRU cryptosystem against these quantum based attacks
moves it more interesting and developing position day by day.

Some examples of quitely full-scale non-destructive attacks to the NTRU cryptosystem were originally
made by Coppersmith et al. in 1997 [9]. Then new parameters which does away with effects of this attack
were presented by Hoffstein et al. in 2003 [10].

As an another example of attack [11], it has increased importance up till today by presenting to more
powerful, current and new parameters and solutions to the NTRU cryptosystem organized an attack of
splitting the difference [12].

On behalf of detailed readings, it can be seen to [13–15] for different types of attacks types, and on the
contrary, it can be seen to [16–18] for proposed new parameters and new system.
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2. Aim and Scope

In this study, which is aimed to carry the NTRU cryptosystem on robust algebraic structures, some
interesting properties and results were added to the cryptosystem theoretically. Taking advantage of the
fact that matrices are larger and more complex than a vector, more attention has been paid to security,
which is the main purpose of cryptology. For this purpose, the newly proposed cryptosystem has been
tried to be presented in a more complex and powerful form. But at the same time, since circulant matrices
are determined by a vector with a basic rule, the new proposed system is also considered to be practical
and useful. In the light of this study, new lattice types will be determined and security analyzes can be
made by arranging attacks on the proposed NTRU crypto system.

3. NTRU Parameters

These are parameters using in the encryption and decryption operations of NTRU and in the key
generation processes:

• N : it determines a maximum degree of polynomials being used. N is chosen as a prime so that the
process is preserved against attacks, and it is chosen big enough so that the process is preserved from
lattice attacks.

• q : it is a large module and it is chosen as a positive integer. Its values differ relatedly what we aim in
the process.

• p : it is a small module and generally a positive integer. it is rarely chosen as a polynomial with small
coefficients.

The parameters N, q and p can be differently chosen according to the preferred security level. The case
(p, q) = 1 is always preserved so that the ideal (p, q) is equal to the whole ring.

• L f ,L1 : sets of private key, sets in which it is chosen polynomials to be kept confidential chosen for
encryption.

• Lm : it is a plain text set. it is stated a set of unencrypted and codable polynomials.

• Lr : it is a set of error polynomials. It is stated a set of arbitrarily chosen error polynomials with small
coefficients in the phase of encryption.

• center : it is a centralization method. An algorithm guaranteing which mod q reductions works in
perfect truth in the phase of decryption.

It can be seen [1] for a perscrutation of the NTRU parameter which is introduced above in general for now
and can be given its values in the next section.

4. Algebraic background of NTRU

4.1. Definitions and notation

The encryption operations of NTRU is performed in a quotient ring R = Z[x]/(xN
− 1). N is a positive

integer and it is generally chosen as a prime. If f (x) is a polynomial in R, then fk denotes a coefficient of
xk for every k ∈ [0,N − 1] and f (x) denotes a value of f in x for x ∈ C. A convolution product h = f ⋆ 1 is
given by hk =

∑
i+ j≡k mod N fi · 1 j where f and 1 are two polynomials in R. When NTRU was first introduced,

it was chosen p and q as a power of 3 and 2, respectively. The subset Lm : consisted of polynomials with the
coefficients {−1, 0, 1} called ternary polynomials. The private keys f ∈ L f was usually chosen in the form
1 + p · F. The studies shows that it can be chosen p as a polynomial and parameters can be varied.
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4.2. Key generation
1. f ∈ L f and 1 ∈ L1 is abritrarily chosen such that f is invertible in mod p and mod q.

2. Fq = f−1 mod q and Fp = f−1 mod p.

3. A private key is (p,Fp).

4. A public key is H = p · 1 ⋆ Fq mod q.

It is noted that 1 cannot be used in the phase of decryption. Thus, it cannot be given as a private key. Since
H ⋆ f = p · 1 mod q, H ⋆ f = 0 mod p which cannot be used when mod p is substituted.

4.3. Encryption
If the encryption is represented in an algorithmic language;

Input: a message m ∈ Lm and a public key H.
Output: a cipher message e ∈ Υ(m)

1. Chose r ∈ Lr arbitrarily.

2. Return e = r ⋆H +m mod q.

The set Υ(m) denotes plain texts m which can be encrypted.

4.4. Decryption
If a phase of decryption is represented as algorithmic, an algorithm D acts e as below:

Input: a cipher message e ∈ Υ(m) and a private key (p,Fp).
Output: a plain text D(e) = m ∈ Lm.

1. Calculate a mod q = e ⋆ f modq.

2. Have a polynomial amodq with integer coefficients from a = p · r ⋆ 1 + f ⋆ m ∈ R by performing
centralization operation.

3. m mod p = a ⋆ Fp mod p

4. a plain text m = Ψ mod p

It is noted thatΨ is the mappingΨ : m 7−→ m mod p. That is, it performsΨ : Lm −→ Lm mod p. It is important
choosing of a convenient parameter in order to work decryption operation impeccably, i.e., D(e) = m.

5. Circulant Matrices

In the most general sense, a circulant matrix A is

A =


a0 a1 a2 . . . an−1

an−1 a0 a1 . . . an−2
...

...
...

. . .
...

a1 a2 a3 . . . a0

 (1)

for certain ai, 0 ≤ i ≤ n − 1. Unless otherwise specified, all of the inputs ai are chosen from Z. The circulant
matrices are determined by a characteristic equation

A j,k = a(k− j) mod n.

[19]

Definition 5.1. [19] If a circulant matrix A has the property A = AT, then A is called a symmetric circulant matrix.
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5.1. Eigenvalues and Eigenvectors
The eigenvaluesψk and corresponding eigenvectors yk of a circulant matrix A are solutions to an equation

Ay = ψy. (2)

The values
ψm =

∑n−1
k=0 ake−2πimk/n (3)

are different eigenvalues of the circulant matrix A, where αm = e−2πim/n are n. complex roots of the unit for
0 ≤ m ≤ n − 1. Corresponding eigenvectors are

ym =
1
√

n
(1, e−2πim/n, ..., e−2πim(n−1)/n). (4)

Definition 5.2. [19] If a row vector forming a first row of a circulant matrix A is chosen in the form (a0, a1, ..., an−1),
then a polynomial f (x) = a0 + a1x + ... + an−1xn−1 is called a relevant polynomial of A.

5.2. Determinant
If a relevant polynomial f of a circulant matrix A, the determinant of A is

det(A) =
∏n−1

j=0 f (α j). (5)

[19]

Remark 5.3. Since the determinant of a relevant circulant matrix A cannot be 0 for any polynomial f which does
not accept n. complex roots of the unit, A is invertible.

5.3. Decomposition of circulant matrices
It is possible to write

Aym = ψmym, m = 0, 1, ...,n − 1

for Equation (4.2). If all eigenvectors of A are written in the form

U = [y0
|y1
|...|yn−1]

such that its columns form a matrix U, respectively, U is called a matrix of eigenvectors of A [19].
Let D = dia1(ψm) be a matrix where eigenvalues ψm are sorted in its diagonal and other inputs are 0.

Then it is possible that
AU = UD.

Thus, a circulant matrix A is split in the form

A = UDU−1

and it is assimilated to a diagonal matrix. Similarly,

D = U−1AU.

Theorem 5.4. [19] Let A and D be two circulant matrices. Then

(i) AB = BA, i.e., the multiplication is commutative,

(ii) A + B is a circulant matrix,

(iii) if ψm , 0, then the matrix A is non-singular and its inverse is

A−1 = UD−1U−1.
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Theorem 5.5. The rank of a circulant matrix A is n − d for deg(gcd( f (x), xn
− 1)) = d where f is its relevant

polynomial.

Theorem 5.6. The circulant matrices constitute a commutative ring according to the known matrix addition and
multiplication. Also, this ring is denoted by MC.

Theorem 5.7. A relevant circulant matrix is always invertible for a polynomial f such that gcd( f (x),
xn
− 1) = 1.

6. The Proposed Cryptosystem

Let a polynomial f be chosen from a ring Rq = Zq[x]/(xn
− 1) such that gcd( f , xn

− 1) = 1, and let the
relevant circulant matrix of f be denoted by C f . Define a mapping φ between rings Rq and MC by

φ : Rq −→MC
φ( f ) = C f .

If it is shown that φ is an isomorphism, then the operations in the ring Rq are moved to MC. Thus, a new
NTRU-based cryptosystem is constituted by using different algebraic properties.

Theorem 6.1. The mapping φ( f ) = C f is an isomorphism.

Proof. Since the relevant circulany matrix of a polynomial f ∈ Rq is single, the mapping is well-defined. If
φ( f ) = C f and φ(1) = C1 for f , 1 ∈ Rq, then the proof is completed since

(i) φ( f + 1) = C f+1 = C f + C1 = φ( f ) + φ(1) and

(ii) φ( f ⋆ 1) = C f⋆1 = C f .C1 = φ( f ).φ(1). ⊠

Particularly, this isomorphism is important to find invertible elements by utilizing the problem of
finding eigenvalues in the ring MC rather than just using Euclidean algorithm when invertible elements are
searched in the ring Rq. Before the proposed system is introduced, the following presupposition are stated.

(i) Unless indicated otherwise, all polynomials f ∈ Rq and 1 ∈ Rq are chosen such that ( f , xn
− 1) =

(1, xn
− 1) = 1.

(ii) The set of polynomials to be sent as messages is as follows:

Lm = {m ∈ Rq|Cm (mod p) = Cm}.

(iii) Unless otherwise specified, the parameters (p, q,N) is as in the classical NTRU system.

6.1. How the NTRU system works in the ring MC?
First, a message polynomial m ∈ Rq which want to be sent is moved to MC by the mapping φ(m) =

Cm.Similarly, the operations are continued by moving the polynomials { f , 1, r} to MC as follow.

(1) A matrix C−1
f is obtained such that C f .C−1

f = I.

(2) A finite Ch is shared as a public key such that p.C−1
f .C1 = Ch.

(3) A text Ce obtained in the form of

Ce ≡ p.C−1
f .C1.Cr + Cm (mod q)

is sent to a receiver as a cipher-text by choosing Cr ∈ MC. The receiver is decrypted by secret key
matrices {C f ,C−1

f } as below.



M. Sever / TJOS 9 (3), 207–215 212

(1) The matrix Ce.C f ≡ Ca (mod q) is calculated.

(2) The proper parameters are chosen such that Ca = CQ (mod q). Then Ca.C−1
f ≡ Cb (mod p) is calculated.

(3) The process is finished by controlling Cm = Cb (mod p).

The above mentioned proposition is to stay loyal to the classical NTRU algorithm. Though, more
different systems are proposed in the ring MC. For example, the following system proposition is an
example of a symmetric encryption.

Proposition 6.2. If a public key (or a secret key) using in the encryption is C f .C1 = Ch for C f ,C1 ∈MC and m ∈ Lm,
then a cipher-text

Ce = p.Cr.Ch + Ch.Cm (mod q)

is only decrypted by a public or secret key.

Proof. If C−1
h and

Ce.C−1
h = p.Cr.Ch.C−1

h + Ch.Cm.C−1
h (mod q)

are calculated, then
Ce.C−1

h ≡ Cm (mod p)

since MC is commutative. This case can aim to the speed and effortlessness by decreasing the security. ⊠

Now, let the proposed cryptosystem be restated by two public keys and four secret keys as follows.

Proposition 6.3. If a message m ∈ Lm is sent by encrypting in the form of

Ce = p.Ch.Cr + CH.Cm (mod q)

by means of Cr ∈MC where the public keys h = C−1
f .C1 and H = C−1

1 .C f are shared and the matrices {C f ,C1,C−1
f ,C

−1
1 }

are kept confidental by means of the matrices C−1
f and C−1

1 for C f ,C1 ∈ MC, then the message is tried to decrypt by
sending more safely.

Proof. It follows
C f .Ce.C1 = p.C2

1.Cr + C2
f .Cm (mod q) (6)

by means of the statement
Ce = p.C−1

f .C1.Cr + C−1
1 .C f .Cm (mod q). (7)

If C2
f ∈MC, the matrix C−1

f is multiplied by Equation (6.7) twice and the result is find in mod p, then

C−1
f .Ce.C1 = Cm mod p

which means that the proof is completed. ⊠

Remark 6.4. As it can be clearly seen from Proposition 6.1 and Proposition 6.2, since a mapping Cm
φ−1

−−→ m does not
process without knowing the isomorphism φ satisfying m ∈ Lm

φ
−→ Cm, the final step φ−1(Cm) = m of the encryption

is applied which means that it adds to the set of the secret keys of φ.

Let a new isomorphism be defined for a different system proposition, and let a ring of diagonal matrices
be denoted by MD.

Theorem 6.5. It is possible

Cm = UDU−1 and D = U−1CmU



M. Sever / TJOS 9 (3), 207–215 213

for a matrix Cm from the decomposition theorem of circulant matrices. By means of this theorem, let a mapping δ be
defined by

δ : MC −→MD
δ(Cm) = Dm

where Dm denotes an eigenvalue matrix corresponding m. The mapping δ is an isomorphism.

Proof. It is clear from the decomposition theorem of circulant matrices that a circulant matrix Cm is absolutely
similar to a diagonal matrix D. Hence, the mapping is well-defined.

Let

(i) δ(Cm1 ) = Dm1 , δ(Cm2 ) = Dm2 and δ(Cm1 + Cm2 ) = δ(Cm1+m2 ) = Dm1+m2 = Dm1 +Dm2 = δ(Cm1 ) + δ(Cm2 ),

(ii) δ(Cm1 .Cm2 ) = δ(Cm1⋆m2 ) = Dm1⋆m2 = Dm1 .Dm2 = δ(Cm1 ).δ(Cm2 ), and

(iii) Dm1 = Dm2

for Cm1 , Cm2 . Since the eigenvector matrices U of all circulant matrices are same, it is obvious that

Dm1 = U−1Cm1 U and Dm2 = U−1Cm2 U.

If
U−1Cm1 U = U−1Cm2 U,

then
Cm1 = Cm2 ,

and so it follows
m1 = m2

which is a contradiction. Thus, the mapping is bijective. ⊠

Let an isomorphism δ be added to the NTRU system as follows.

Proposition 6.6. The encryption

Ce ≡ p.Ch.Cr + CH.δ(Cm) (mod q) (8)

processes propoerly for C f ,C1 ∈MC ve m ∈ Lm.

Proof. If Equation (6.8) transforms to
C−1

H .Ce = δ(Cm) (mod p)

and the mapping δ−1 is applied in the final step, then

δ−1(C−1
H .Ce) = Cm (mod p)

and
φ−1δ−1(C−1

H .Ce) = m

after applying φ−1. Thus, the proof is completed. ⊠

Now, a new algorithm is presented by using that the eigenvector matrix U of any circulant matrix is
single as follows.

Proposition 6.7. The equation
Ce = p.Cr.Ch.U +U.Ch.δ(Cm) (mod q)

can be decrypted on condition that C f ,C1 ∈MC and U are as in Proposition 6.3, C f .C1 = Ch is a public key and U is
a secret key.
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Proposition 6.8. A message m ∈ Lm can be sent in the three steps in encrytion by means of the equation Cm =
UDmU−1 as below. Cm −→ {U,Dm,U−1

} are taken, respectively. That is,

Ce1 ≡ p.Cr.Ch.U +U.Ch.U (mod q)

Ce2 ≡ p.Cr.Ch.U +U.Ch.Dm (mod q)

Ce3 ≡ p.Cr.Ch.U +U.Ch.U−1 (mod q)

process, respectively, and the product of the found plain texts gives a major plain text after all three decryptions are
finished. This suggestion is the effective method against the plain text attacks.

Theorem 6.9. Let a polynomial f (x) ∈ Rq be reducible in the ring Rq, i.e. f (β0) = 0 (mod q) be satisfied for some
β0 ∈ Zq. Then there exists a relationship C f .CβT = 0 between the relevant circulant matrix C f of the polynomial f
and CβT correponding to the transpoze of a vector β = (1, β0, β2

0, ..., β
n−1
0 ).

Proof. Let f (x) =
∑n−1

i=0 αixi and β0 ∈ Zq için f (β0) = 0. Then
∑
αiβi

0 = 0, and ⟨α, β⟩ = 0 where α =
(α0, α1, ..., αn−1) and β = (1, β0, β2

0, ..., β
n−1
0 ) are in vectorial forms. Similarly, a cyclic translation of α and β is

⟨
−→α
−→
β ⟩ = 0 for −→α and

−→
β , and since this identity is preserved for all of the n − 1 translations, it is possible to

write
C f .CβT = 0 (mod q)

in the matrix form. ⊠

Let Theorem 6.3 be used in the NTRU cryptosystem as follows: let the dual of the relevant circulan
matrix of a chosen secret key f add to a message m as an error insertion.

Theorem 6.10. If a matrix Ch = C−1
f .C1 is chosen as a public key and the dual of a matrix C f is denoted by CβT by

means of the circulant matrices C f and C1, then it is properly obtained a message Cm from the encryption equation

Ce = p.Ch.Cr + (Cm + CβT ) (mod q).

Proof. It follows that
C f .Ce ≡ p.C1.Cr + C f .Cm + C f .CβT (mod q)

≡ p.C1.Cr + C f .Cm + 0 (mod q)
≡ C f .Cm mod p

(9)

by multiplying
Ce ≡ p.C−1

f .C1.Cr + (Cm + CβT ) (mod q)

by the private key C f from the left. Then

C−1
f .C f .Ce ≡ Cm mod p

is obtained by using the private key C−1
f , and so the claim is proved. Thus, the encryption is made safe by

hidding the message matrix a bit more by means of an another message. ⊠

Traditionally, there exists a uniquely defined solution x0 of the system of linear equations Ax = b in Zn

as log as A is a matrix with the rank n. Because the circulant matrices satisfy this property, it is presented a
different contribution which they add to the NTRU system.

Theorem 6.11. Let the polynomials f , 1,m ∈ Rq be chosen as in the classical NTRU ring and let Ch,CH and C f be
chosen as in Proposition 6.2. If a message polynomial m which want to be encrypted is hidden in the form of C f .m = y
and then it is sent in the form of Ce = p.Cr.Ch + CH.Cy mod q, the decryption processes properly.

Proof. It is proved from Proposition 6.2 Cy is obtained from the equation Ce ≡ p.Cr.Ch + CH.Cy mod q. Then
it is shown that Ce ≡ Cy mod p. Thus, we have e ≡ y mod p by the means of the isomorphism φ−1 applying
in the form of φ−1(Ce) ≡ φ−1(Cy) mod p, and so it follows from C f .m = y⇒ C−1

f .y = m that C−1
f .e = m which

the claim is proved.
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7. Conclusion and Recommendations

In this study, which aims to carry the NTRU cryptosystem on solid algebraic structures, some interesting
features and results are added to the cryptosystem. Taking advantage of the fact that matrices are larger
and more complex than a vector, more attention has been paid to security, which is the main purpose of
cryptology. But at the same time, since circulant matrices are determined by a vector with a basic rule, the
new proposed system is also considered to be practical and useful. In the light of this study, new lattice
types can be determined and security analyzes can be made by arranging attacks on the proposed NTRU
crypto system.
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