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Some Notes on Diagonal Lifts in the Semi-Cotangent Bundle
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Abstract. The main purpose of the present paper is to study diagonal lift tensor fields of type (1,1) from
tangent bundle T(M,,) to semi-cotangent (pull-back) bundle (t*(M,), 72).
1. Lifts of Vector Fields on a Cross-Section in the Semi-Cotangent Bundle

Let M,, be an n-dimensional differentiable manifold of class C” and T (M,,) the tangent bundle determined
by a natural projection (submersion) 7ty : T (M,,) — M,. We use the notation (x') = (x%, x*), where the indices

i, j,...run from 1 to 2n, the indices a, B, ... from 1 to n and the indices @, §, ... from n+1 to 21, x* are coordinates
in M, x* = y* are fibre coordinates of the tangent bundle T(M,). If (x") = (x¥,x*) is another system of
local adapted coordinates in the tangent bundle T(M,,), then we have

x@ = ‘;";:yﬁ,
, vt @)
4]

The Jacobian of (1) has components

§ &x,'f Aa’ Aa’ ]/S
i’y _ _ B ,Bs,
(Aj)_(axj)_[ 0 A )

where AZ‘;' = & Ag = 2 Lot Ti(My)(x = m@®),% = (1, x%) € T(M,)) be the cotangent space at a

oxP 7 oxPoxe
point x of M,,. If p, are components of p € T;(M,) with respect to the natural coframe {dx*}, ie. p = p;

dxt, then by definition the set +*(M,,) of all points (xI) = (x%, x“,xi), X@ = Pas L ], ... = 1,...,3n with projection
M P(M,) = T(M,) (e 1 @ (3, x%x%) — (&%, x%) is a semi-cotangent (pull-back [11]) bundle of the
cotangent bundle by submersion 7; : T (M,;) = M, (For definition of the pull-back bundle, see for example

[1], [3], [4], [5],[6],[10],[12]). Itis remarkable fact that the semi-cotangent (pull-back) bundle has a degenerate
symplectic structure [11]

0 0 0
w : (C‘)AB) = dp =10 O —(Sg
06 o0
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It is clear that the pull-back bundle *(M,) of the cotangent bundle T*(M,,) also has the natural bundle

structure over M, its bundle projection n : t*(M,;) — M, being defined by 7 : (x%, x%, x%) — (x*), and hence
7T = 111 0 71p. Thus (#*(M,), m1 o m2) is the composite bundle [[13], p.9] or step-like bundle [14].

We analyze some properties of diagonal lift of tensor fields of type (1,1) in semi-cotangent bundles with
the help of adapted frames.

We denote by Sf;(T(Mn)) and 5’; (M,;) the modules over F (T(M,)) and F (M,,) of all tensor fields of type
(p, 9) on T(M,,) and M, respectively, where F (T(M,,)) and F (M,,) denote the rings of real-valued C” —functions
on T(M,) and M, respectively.

To a transformation (1) of local coordinates of T(M,), there corresponds on t*(M,) the coordinate trans-
formation [8], [9]:

a _
x aF Y
XY = x® (xﬁ), ()
a _ o
= P

The Jacobian of (2) has components [8], [9]:
A? Ags ¥ 0

Ax@ap=| 0 AY 0 |, 3)
0 poAbag, Al
where o -
T a0 = I°x

e oxBoxe’ TPV T gxf ox

We denote by SZ(T(MH)) and 3§(M,1) the modules over F(T(M,)) and F (M,) of all tensor fields of
type (p,q) on T(M,) and M,, respectively, where F (T(M,)) and F (M,) denote the rings of real-valued
C” —functions on T(M,,) and M,,, respectively.

Let 0 be a covector field on T(M,,). Then the transformation p — 6,, 6, being the value of 0 atp € T(M,,),
determines a cross-section fg of semi-cotangent bundle. Thus if 0 : M, — T*(M,) is a cross-section of
(T*(M,), T, M,,), such that 7 o ¢ = I(,), an associated cross-section By : T(M,) — t*(M,) of semi-cotangent
(pull-back) bundle (t*(M,), 12, T(M,)) of cotangent bundle by using projection (submersion) of the tangent
bundle T(M,) defined by [[2], p. 217-218], [[7], p. 301]:

Bo (xa, x"‘) = (xa, x%,00m (xa, x“)) = (xR, x”‘,a(x"‘)) = (xa, x%, 0, (xﬁ».

If the covector field O has the local components 0, (xﬁ ), the cross-section fg (T(M,)) of t'(M,,) is locally
expressed by

Ty =V (), 2 =x 2T =pe=0u(v) @

with respect to the coordinates x4 = (x%,x%, xg) in t(M,). x* =y~ being considered as parameters. Differ-
entiating (4) by x* = y*, we have vector fields B(E) (B = 1,...,n) with components

o=V
A B
(ﬁ):ai:aEA: 8I§x“ ,
IxF 9500

which are tangent to the cross-section g (T(M,)) [8], [9].

Thus B ®) have components
5
_ - BA | =
B+ (25 = [ 0 ]



F Yildirim, H. Cengiz /T]OS 9 (3), 216-224 218

with respect to the coordinates (x®, x%, xg) in t*(M,,), where

5o = aa = X
B B oxP
Let X € 5(1) (T(My)), i.e. X = X*d,. We denote by BX the vector field with local components
B 5§X3 A%XB X@
BX : (BA, Xﬁ) =| o =| o =| 0 6)
®) 0
0 0

with respect to the coordinates (x7, x"‘,xg) in #*(M,), which is defined globally along B¢ (T(M,)). Then a

mapping
B : 35(T(M)) — 35(Bo (T(M.)))

is defined by (5). The mapping B is the differential of fg : T(M,) — #(M,) and so an isomorphism of
35(T(My)) onto Jj(Bo (T(Ma))) [8], [9]-

Since a cross-section is locally expressed by x® = y* = const., X = Pa = const., x* = x%, x* being
considered as parameters. Differentiating (4) by x*, we have vector fields C(ﬁ) (B =n+1,..,2n) with
components

%
xA p

C === 8ﬁxA = 859(“ ,

® o { aﬁea ]

which are tangent to the cross-section g (T(M,)).
Thus C(ﬁ) have components
IV
C(Chy)=| o
B) B p
07| J.
with respect to the coordinates (x®, x%, xg) in t*(M,,), where

ox®
a __ a __
6[3 = Aﬁ =g

Let X € 3} (T(M,)). Then we denote by CX the vector field with local components

XPasVe
CX - (CA Xﬁ) -| xo

6
) 33,0, ©)

with respect to the coordinates (x%, x*,x%) in #(M,), which is defined globally along B¢ (T(M,)). Then a
mapping
C: IH(T(M,)) — Bi(Bo (T(M,)))
is defined by (6). The mapping C is the differential of B¢ : T(M,) — #*(M,) and so an isomorphism of
I(T(My)) onto 3}(Bo (T(M,))) [8], [9].
Now, consider w € 3%(M,) and vector field X € I} (T(M,)), then " (vertical lift), “X (complete lift)
and "MX (horizontal lift) have respectively, components on the semi-cotangent bundle #(M,,) [8], [9]:

0 ysaexa _Faxﬁ
oo cc HH p
w:| 0 |, X:| X , Xl X* 7)
Wq —Pa(a’aXU) Xﬁl",;a
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with respect to the coordinates (xa, x“, xg), where
Iy = VT, Tpa = OcTga.
On the other hand, the fibre is locally represented by
X = y* = const., x* =const., X¥=p,=pa,
Pa being considered as parameters. Thus, on differentiating with respect to p., we easily see that the vector

fields E @) =" (dxﬁ) (E =2n+1,...,,3n) with components

o
25 257 - | [ §£ ]

is tangent to the fibre, where
_ OxP
=
Let w be an 1-form with local components w, on M, so that w is a 1-form with local expression w = w,dx*.
We denote by Ew the vector field with local components

ros e [ 8 ] ®

which is tangent to the fibre. Then a mapping

& = A

E: 3%M,) - It (M)
is defined by (8) and so an isomorphism of 3%(M,) in to I} (t*(M,)) [8], [9].
We considerin t! (U)  3nlocal vector fields B @) C(ﬁ) and E (/:;) along Be (T(M,)), which are respectively
represented by

d d
- = —_— = — - = ﬂ
B(ﬁ) B&xg, C(ﬁ) Caxﬁ' E(B) EdxP.
Theorem 1.1. Let X be a vector field on T(M,). We have along Bo (T(M,,)) the formula

©X = CX + B(LyX) + E( ~Lx0),

where Ly X denotes the Lie derivative of X with respect to V, and Lx0 denotes the Lie derivative of 6 with respect to
X 18], [9].

On the other hand, on putting C(E) =E (E)' we write the adapted frame of By (T(M,)) as {B @) C(ﬁ), C(ﬁ)}.
The adapted frame {B(ﬁ), C(ﬁ), C@} of By (T(M,)) is given by the matrix
0§ IVt 0
- - B
A:(Ag‘): 0 o 0 | )
0 b O
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— -1
Since the matrix A in (9) is non-singular, it has the inverse. Denoting this inverse by (g) , we have

(8 eV 0
@' =@’ o0 o ol a0
0 g6

where 4(4) " = (A7) (A2)" = 64 =T, where A = (3,0,), B = (§..5), C = (6,0,6).

Then we see from Theorem 1.1 that the complete lift “X of a vector field X € Sé(T(MH)) has along
Bo (T(M,)) components of the form
LyX“
XD(
_LXQUt

“X .

with respect to the adapted frame {B(ﬁ), C(ﬁ), C(ﬁ)} [8], [9].

Theorem 1.2. The complete lift “X of a vector field X in M, to t*(M,,) is tangent to the cross-section By (T(M,))
determined by a 1 — form O and vector field V in M, if and only if

Lx0=0,LyX =0,
where Ly X denotes the Lie derivative of X with respect to V, and Lx 0 denotes the Lie derivative of 6 with respect to X.

BX, CX and Ew also have components:

X 0 0
BX:| 0 |, CX:| X*|, Ew:| O (11)
0 0 Wy

respectively, with respect to the adapted frame {B (
by a 1-form 6 on T(M,) [8], [9].

B) C(ﬁ), C(ﬂ)} of the cross-section S (T(M,)) determined

2. Complete Lift of Tensor Fields of Type (1,1) on a Cross-Section in Semi-Cotangent Bundle

Suppose now that F € J1(T(M,)) and F has local components Fgin a neighborhood U of M,, F =

Fg&a ® dxP. Then the semi-cotangent (pull-back) bundle #(M,) of cotangent bundle T*(M,) by using
projection of the tangent bundle T(M,,) admits the complete lift “F of F with components [8], [9]:

P Yoo 0
“F:(“F)=| 0 Fg Oﬁ , (12)
0 po(dpFs — daF5) FL

with respect to the coordinates (x%, x*, xg) on #*(M,). Then “F has components F4 given by

Fg LVFg 0
“F=(Fh=| 0 F 0 (13)
0 @0 Fj
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with respect to the adapted frame {B ®) C(ﬁ), C(ﬁ)} of the cross-section B¢ (T(M,)) determined by a 1-form
0in T(M,,), where A = (E, a, 5), B= (B, B, E) [8], [9]. Also, the component “Fg of “F is defined as Tachibana
operator ¢rO of F, i.e.,

"Fj = 00 = (F;, = daF})0 — F;0, 0, + FLI50,,
and LVF;’ denotes the Lie derivative of Fg with respect to 'V, i.e.,

LvFy = VY9, Fg + FlogV? — Fya, V*.

3. Adapted Frames and Diagonal Lifts of Affinor Fields

Let V be a symmetric affine connection in M,,. In each coordinate neighborhood {U, x*} of M,,, we put

d

2 @ = g
vl 6 dx®.

X =

Then 37 local vector fields Yy, 77 X(,) and /0@ have respectively components of the form

55 —l"g 0
Y(a) 1 0 , HHX(a) : 5’2 , ””6(“) : Oa (14)
0 Tga 0g

with respect to the induced coordinates (x%, x“,xi) in 77! (U), where we have used (7). We call the set
{Y(a),HH X, 9("‘)} the frame adapted to the symmetric affine connection V in 7! (U). On putting

em =Y, =" Xu, ?@ = 9@ (15)

we write the adapted frame as
few) = {?@fm)r?@)}- (16)

The adapted frame {'E(B)} = {aa),aa),?@} is given by the matrix

s¢ -T* 0

A (AD ) 5aﬁ 0

A:(Af)=| 0 & . (17)
0 Tpe &

— -1
Since the matrix A in (17) is non-singular, it has the inverse. Denoting this inverse by (K) , we have

. . & rg) 0
(X) :(Zﬂg) =lo o o | (18)
0 —Tey

where A(A) = (A%)(A%)" = 64 =T, where A = (@, &), B = (B, 8, E) C= (5, 6, 5).
If we take account of (16), we see that the diagonal lift PFofFed %(T(M,,)) has components [8], [9]:
~Fy  -TSFS—TSF: 0
DD DD 1o}
F:("Fy=| 0 Fy 0 (19)

0 TyoFy +TaoFy -
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with respect to the coordinates (x%, x%, xg) on t*(M,), where
I8 =y'TS, Tao=pTho

which proves (19).

We now see, from (16), that the diagonal lift "FofFe 5%(T(Mn)) has components of the form

-F3 0 0
DD DD
F:("Fh=| 0 F 0
o o -F

with respect to the adapted frame {?(B)} in t'(Mp).

We now obtain from (19) that the diagonal lift ""F of an affinor field F € S%(T(MH)) has along o (T(M,))
components of the form [8], [9]:

—F8 — (VYO Fy - (VgVe)F2 0
“F:| 0 Fs 0 (20)
0 —(VpOo)Fs— (VaBo) F§ —F,

with respect to the adapted frame {B ?) C () C(ﬂ)}.

Then we see from (7) that the horizontal lift "HX of a vector field X € 5(1) (T(M,)) has along B¢ (T(M,))
components of the form

—XP (V,V?)
HHx .1 X« (21)
—(V50a) X#

with respect to the adapted frame {B(ﬁ), C(ﬂ), C(}g)} [8], [9].
Using (7), (20) and (21), we have along o (T(M,)):

Theorem 3.1. If F and X are affinor and vector fields on T(M,), and w € S(l’(Mn), then with respect to a symetric
affine connection V in M,,, we have [8], [9]:

(i) PPF (HHX> =HH (FX),
(ii) PPF ("w) = -"(woF).

Theorem 3.2. [fFGe J %(Mn), then with respect to a symetric affine connection V in M, we have [9]:
PPFPPG +PP GPPF = P (FG + GF).
Theorem 3.3. If F, G € 3}(M,), then with respect to a symetric affine connection V in M,,, we have [9]:
DDpHH G 4 DD GHHE _HH pPDG (HH GDDE _ DD (FG 4 GF) .

Putting F = G in Theorem 3.2 and Theorem 3.3, we have

HHFDDF — DDFHHF _DD (FZ)
(DDF)Zp — HH(F2p)’ (DDF)2p+1 _DD (F2p+1), (p — 1,2,)

for any F € I31(T(M,)).
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Theorem 3.4. The diagonal lift Tof the identity tensor field I of type (1,1) has the components [9]:

(% 2ry 0
7l 0 s 0 (22)
0 20 -0f

From Theorem 3.4, we have

Theorem 3.5. The diagonal lift Tof the identity tensor filed I of type (1, 1) satisfies ﬁ =1

Proof. In fact, from (22), we easily see that

o= TJ0)= (IB>(75

-4 ZF" —5’* 2rf” 0
= | 0 0
0 2r,m Zfeﬁ -0
5% 214 - 2ra 0
-0 s 0
0 2Cgq —2Tpa 6f
5 0 0
=10 & o
0 0 &
= o2

[
Theorem 3.6. The lifts "8 X of X € I}(T(M,)) and “w of w € IY(M,) have respectively components

0
0
Wa

with respect to the adapted frame {’e\(B)} = {?@,’e\(a),?(ﬁ)}, X* and w, being local components of X and w

respectively.

() "X -

0
X , (ll) LLPR
0

Proof. () If X € Sl(T(M ), from (7) and from (17), then we have

0% —1—‘“ 0 _Fféxﬁ
AHHY  — 0 5;; 0 xB
0 Tpe & J\XTpo
0
= X«
0

(i) fwe Sg(Mn), from (7) and from (17), then we have
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a  _Ta
R 56 -T3 0 \(g
AZJUCU = 0 6g 0 0
0 Tpe b J\@p

0

= 0

Wq

O

Using Theorem 3.1, we have
Theorem 3.7. F,G € J}(M,,), then
[DDFIDD G] =PP [EG].

Proof. If X is an arbitrary vector field in T(M,), then

X = DDFDD GHHX _DD GDDFHHX
— DDFHH (GX) _DD GHH (FX)
= HH(FGX - GFX)
= "(EGIX)
= DDIEGJHH X

[DD FDD G]HH

by virtue of Theorem 3.1. Thus we have [DDF,DD G] =PP[EG]. O
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