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Abstract. In this study, the garden equation which is a nonlinear partial differential equation is discussed.
First, we will expand the garden equation to the Caputo derivative and Atangana-Baleanu fractional
derivative in the sense of Caputo. Then, we will then demonstrate the existence of the new equation with
the help of the fixed point theorem. Finally, we will examine uniqueness solution for the two fractional
operators.

1. Introduction

Many nonlinear partial differential equations are used to describe real world problems. Such problems
are used in many branches, especially in engineering, earth sciences and physics [5–7]. For example, one
of these examples is the garden equation. The garden equation is a nonlinear differential equation used
to describe some dynamics in hydrodynamics and plasma physics. For example, plasma physics is the
study of the state of a substance that contains charged particles and liquids under the influence of electric
and magnetic fields. It is possible to create plasma by heating a gas until it breaks chemical bonds that
connect electrons to parent atoms or molecules. The subject of plasma is up to date and has many different
application areas such as beam storage, accelerator physics, space and astrophysics.

To describe complex problems, the concept of a fractional-order derivative and a partial differential
equation are used. One of the difficulties encountered in solving such equations is to predict the future
behavior of the physical problem. Using fractional derivative operators to cope with this situation helps
researchers [4]. Many fractional derivative definitions are used in the literature. The Caputo version [2]
of the captive derivative is mostly used to model real world problems because it allows the use of initial
conditions. The problem encountered in this version, however, is singularity due to the function used
to induce the local derivative. Atangana-Baleanu fractional derivative [3] in the sense of Caputo is also
quite assertive in this regard. Because the kernel used in this definition is both non-local and non-singular.
This allows us to get rid of the singularity problem in the Caputo fractional derivative. Atangana, Akgul
and Owolabi [8] present a detailed analysis including, numerical solution, stability analysis and error
analysis. Atangana and Akgul [9] tried to construct new transfer functions that would lead the Sumudu
transformation to new Bode, Nichols and Nyquist plots.
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In this study, we devoted the first part to the general history and physical history of the garden equation.
In the second part, the necessary definitions and theorems that will be used in the article are given. In the
third section, we expanded the garden equation to the Caputo fractional derivative. Then we examined
the existence and uniqueness solutions of the new equation. In the last chapter, we expanded the same
equation to Atangana-Baleanu fractional derivative in the sense of Caputo. We have examined the existence
and uniqueness solutions for this equation.

2. Preliminaries

We give in this section some fundamental definitions [1–3] on fractional derivative.

Definition 2.1. The Caputo derivative of fractional derivative is defined as [2]:

C
a Dν

t f (t)) =
1

Γ(n − ν)

∫ t

a

f (n)(r)
(t − r)ν+1−n dr, n − 1 < ν < n ∈N. (1)

Definition 2.2. The Riemann-Liouville fractional integral is defined as [1]:

Jν f (t) =
1

Γ(ν)

∫ t

a
f (r)(t − r)ν−1dr. (2)

Definition 2.3. The Riemann-Liouville fractional derivative is defined as [1]:

R
a Dν

t f (t) =
1

Γ(n − ν)
dn

dtn

∫ t

a

f (r)
(t − r)ν+1−n dr, n − 1 < ν < n ∈N. (3)

Definition 2.4. The Sobolev space of order 1 in (a, b) is defined as [2]:

H1(a, b) = {u ∈ L2(a, b) : u′ ∈ L2(a, b)}.

Definition 2.5. Let a function u ∈ H1(a, b) and ν ∈ (0, 1) . The AB fractional derivative in Caputo sense of order ν
of u with a based point a is defined as [3]:

ABC
a Dν

t u(t)) =
B(ν)
1 − ν

∫ t

a
u′(s)Eν

[
−

ν
1 − ν

(t − s)ν
]
ds, (4)

where B(ν) has the same properties as in Caputo and Fabrizio case, and is defined as

B(ν) = 1 − ν +
ν

Γ(ν)
,

Eν,β(λν) is the Mittag-Leffler function, defined in terms of a series as the following entire function

Eν,β(z) =

∞∑
k=0

(λν)k

Γ(νk + β)
, ν > 0, λ < ∞ and β > 0, λ = −ν(1 − ν)−1. (5)

Definition 2.6. Let a function u ∈ H1(a, b) and ν ∈ (0, 1) . The AB fractional derivative in Riemann-Liouville sense
of order ν of u with a based point a is defined as [3]:

ABR
a Dν

t u(t)) =
B(ν)
1 − ν

d
dt

∫ t

a
u(s)Eν

[
−

ν
1 − ν

(t − s)ν
]
ds, (6)

when the function u is constant, we get zero.

Definition 2.7. The Atangana-Baleanu fractional integral of order ν with base point a is defined as [3]:

ABIνt u(t)) =
1 − ν
B(ν)

u(t) +
ν

B(ν)Γ(ν)

∫ t

a
u(s)(t − s)ν−1ds, (7)

when the function u is constant, we get zero.
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3. Garden equation with Caputo derivative

Garden equation is given by,

ut(x, t) = 6(u + ε2u2)ux + uxxx (8)

The initial condition is u(x, 0) = f (x) for the equation (1). The equation (1) with Caputo derivative is
given as below

C
0 Dν

t u(x, t) = 6(u + ε2u2)ux + uxxx. (9)

In this section we show existence and uniqueness solution of the equation (1). Let us present every
continuous functions G = C[a, b] in the Banach space defined in the closed set [a, b] and consider Z = {ρ, a ∈
G, ρ(x, t) ≥ 0 and a(x, t) ≥ 0, a ≤ t ≤ b}

Definition 3.1. [4] Let X be a Banach space with a cone H. H initiates a restricted order ≤ in E in the succeeding
approach.

y ≥ x⇒ y − x ∈ H

Now applying the fractional integral in equation (9), we obtain the following,

u(x, t) − u(x, 0) =
1

Γ(ν)

∫ t

0
(t − r)ν−1

[
6(u + ε2u2)ux + uxxx

]
dr. (10)

Now we can use system (10) to show the existence of equation (8). Necessary lemma for the existence of
the solutions are given as Lemma 3.2. We now need to define an operator which X : G→ G.

Xu(x, t) =
1

Γ(ν)

∫ t

0
(t − r)ν−1φ(x, r, ρ(x, r))dr (11)

To be dealt with more easily, let us consider below

φ(x, r,u) = 6(u + ε2u2)ux + uxxx (12)

Lemma 3.2. The mapping X : G→ G is completely continuous.

Proof. Let N ⊂ G be bounded. There exists a constants l > 0 such that ||u|| < l. Let,

T = max0≤t≤1
0≤u≤l

φ(x, t,u(x, t))

∀u ∈ N, we have,

||Xu(x, t)|| ≤
1

Γ(ν)

∫ t

0
(t − r)ν−1

||φ(x, r,u(x, r))||dr

≤
T

Γ(ν)

∫ t

0
(t − r)ν−1dr

=
T

Γ(ν + 1)
tν

(13)

Hence X(N) is bounded.
Now in the following part, we will consider t1 < t2 and u(x, t),∈ N and ; then for a given ε > 0 if |t2 − t1| < δ.
We have,
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||Tu(x, t2) − Tu(x, t1)|| =||
1

Γ(ν)

∫ t2

0
(t2 − r)ν−1

||φ(x, r,u(x, r))||dr

−
1

Γ(ν)

∫ t1

0
(t1 − r)ν−1

||φ(x, r,u(x, r))dr||

=||
1

Γ(ν)

∫ t2

0
(t2 − r)ν−1

||φ(x, r,u(x, r))||dr

−
1

Γ(ν)

∫ t2

0
(t1 − r)ν−1

||φ(x, r,u(x, r))||dr

−
1

Γ(ν)

∫ t2

t1

(t1 − r)ν−1
||φ(x, r,u(x, r))||dr

≤
1

Γ(ν)

∫ t2

0
||(t2 − r)ν−1

− (t1 − r)ν−1
|| ||ρ(x, r,u(x, r))||dr

(14)

+
1

Γ(ν)

∫ t2

t1

||(t1 − r)ν−1
|| ||φ(x, r,u(x, r))||dr

≤
T

Γ(ν)

∫ t2

0

(
(t2 − r)ν−1

− (t1 − r)ν−1
)
dr +

T
Γ(ν)

∫ t2

t1

(t1 − r)ν−1dr

=
T

Γ(ν)

( ∫ t2

0
(t2 − r)ν−1dr −

∫ t2

0
(t1 − r)ν−1dr +

∫ t2

t1

(t1 − r)ν−1dr
)

=
T

Γ(1 + ν)

(
tν2 + (t1 − t2)ν − tν1 + (t1 − t2)ν

)
≤

2T
Γ(1 + ν)

(t1 − t2)ν +
T

Γ(1 + ν)
(t1 − t1)ν

=
2T

Γ(1 + ν)
(t1 − t2)ν

<
2T

Γ(1 + ν)
δν

=ε

(15)

It is clear seen that, when the same steps are applied to the a(x, t) function, we get same situation. Finally,

|Xu(x, t2) − Xu(x, t1)| ≤ ε

are satisfied. Where δ =
(
εΓ(1 + ν/2T)

)1/ν
.Therefore X(N) is equicontinuous. So that X(N) is compact via

The Arzela-Ascoli theorem.

Theorem 3.3. Let χ : [u1,u2] × [0,∞) → [0,∞), then χ(x, t, .) is non-decreasing for each t in [u1,u2]. there exists
a positive constants z1 and z2 such that C(n)z1 ≤ χ(x, t, z1), C(n)z2 ≥ χ(x, t, z2), 0 ≤ z1(x, t) ≤ z2(x, t), u1 ≤ t ≤ u2.
This means that the new equation has a positive solution.

Proof. We only need to consider the fixed point for operator of X. With framework of Lemma 3.2, the
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considered operator X : K→ K is completely continuous. Let us take two arbitrary u1 and u2,

Xu1(x, t) =
1

Γ(ν)

∫ t

0
(t − r)ν−1φ(x, r,u1(x, r))dr

≤
1

Γ(ν)

∫ t

0
(t − r)ν−1φ(x, r,u2(x, r))dr

= Xu2(x, t)

(16)

Hence X is a non-decreasing operator. So that the operator X : 〈z1, z2〉 → 〈z1, z2〉 is compact and continuous
via Lemma 3.2. In that case, K is a normal cone of X.

3.1. Uniqueness of Solution
The aim of this chapter is to prove the uniqueness of solutions to the equation (10). So the uniqueness

of the solution is presented as below,

||Xu1(x, t) − Xu2(x, t)|| = ||
1

Γ(ν)

∫ t

0
(t − r)ν−1

(
φ(x, r,u1(x, r)) − φ(x, r,u2(x, r))

)
dr||

≤
1

Γ(ν)
B1

∫ t

0
(t − r)ν−1

||u1(x, r) − u2(x, r)||dr
(17)

So that,

||Xu1(x, t) − Xu2(x, t)|| ≤
{ B1tν

Γ(ν + 1)

}
||u1(x, r) − u2(x, r)||

Therefore, if the following conditions hold,

{
B1tν

Γ(ν+1)

}
< 1

Then mapping X is a contraction, which implies fixed point, and thus the model has a unique positive
solution.

4. Garden equation with AB derivative in Caputo sense

We present in this chapter the existence and uniqueness of solutions of the garden equation using the
Atangana-Baleanu derivative. Let Ω = (a, b) be an open and bounded subset of Rn. For a given ν ∈ (0, 1) and
functions u(x, t) ∈ H1(Ω) × [0,T]. We apply the equation (8) to the Atangana-Baleanu fractional derivative,

ABC
0 Dν

t u(x, t) = ξ(x, t,u) (18)

where
ξ(x, t,u) = 6(u + ε2u2)ux + uxxx (19)

Using the Atangana-Baleanu integral to (18) it yields

u(x, t) = u(x, 0) +
1 − ν
B(ν)

ξ(x, t,u(x, t)) +
ν

B(ν)Γ(ν)

∫ t

0
ξ(x, r,u(x, r))(t − r)ν−1dr (20)

for all t ∈ [0,T].

Theorem 4.1. If the inequality (21) hold, ξ satisfies Lipshitz condition and contraction.

0 < 3ϕ1d1 + 2ε2ϕ1d2 + ϕ3
1 ≤ 1 (21)
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Proof. We would like to start with the kernel ξ. Let η and κ are two functions, the following equation is
written:

ξ(x, t, η) − ξ(x, t, κ) =
(
6(η + ε2η2)ηx + ηxxx

)
−

(
6(κ + ε2κ2)κx + κxxx

)
6(ηηx − κκx) + 6ε2(κ2κx − η

2ηx) + (ηxxx − κxxx)
(22)

Then, applying the norm on both sides gives

||ξ(x, t, η) − ξ(x, t, κ)|| =||6(ηηx − κκx) + 6ε2(κ2κx − η
2ηx) + (ηxxx − κxxx)||

≤ 6||ηηx − κκx|| + 6ε2
||κ2κx − η

2ηx|| + ||ηxxx − κxxx||

≤ 3||∂x(η2
− κ2)|| + 2ε2

||∂x(η3
− κ3)|| + ||∂xxx(η − κ)||

(23)

Using the Lipschitz condition for the first order derivative function ∂x; we can find ϕ1 such that

||ξ(x, t, η) − ξ(x, t, κ)|| ≤3ϕ1||η
2
− κ2
|| + 2ε2ϕ1||η

3
− κ3
|| + ϕ3

1||η − κ||

≤ 3ϕ1||η + κ|| · ||η − κ|| + 2ε2ϕ1

(
||η||2 + ||η|| · ||κ|| + ||κ||2

)
||η − κ|| + ϕ3

1||η − κ||

≤

[
3ϕ1d1 + 2ε2ϕ1d2 + ϕ3

1

]
||η − κ||

(24)

So the following inequality can be written.

||ξ(x, t, η) − ξ(x, t, κ)|| ≤ K||(η(x, t) − κ(x, t)||. (25)

where

K =
(
3ϕ1d1 + 2ε2ϕ1d2 + ϕ3

1

)
Therefore ξ satisfies the Lipschitz condition. Then we can say that it is a contraction.
In the another case, the following inequality can be written because our kernel is linear,

ξ2(x, t, v1) − ξ2(x, t, v2) ≤ (cϑ2
1 + d)||v1(x, t) − v2(x, t)||

Hence, the proof is complete. We can now show that the uniqueness of the solution.

4.1. Uniqueness of solution

The uniqueness solution for equation (20) is presented as below. Let u1,u2 ∈ H1 be two solutions of (20).
Let u = u1 − u2. the following equation can be written,

u =
1 − ν
B(ν)

(
ξ(x, t,u1(x, t)) − ξ(x, t,u2(x, t))

)
+

ν
B(ν)Γ(ν)

∫ t

0

(
ξ(x, r,u1(x, r)) − ξ(x, r,u2(x, r))

)
dr,

If the norms of both sides are taken, by the Gronwall inequality [20],

||u|| ≤
1 − ν
B(ν)

||ξ(x, t,u1(x, t))−ξ(x, t,u2(x, t))||+
ν

B(ν)Γ(ν)

∫ t

0
||ξ(x, r,u1(x, r))−ξ(x, r,u2(x, r))||dr ≤ K1

∫ t

0
||ξ(x, t,u1(x, t))||H1 dr.

Finally, the equation (20) has a unique solution for the equation u.



M.A. Dokuyucu / TJOS 5 (1), 1–7 7

References

[1] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego,
Calif, USA, 1999.

[2] M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Part II, Geophys. J. R. Astr. Soc. 13 (1967)
529–539.

[3] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat
transfer model, Therm. Sci. 20 (2016) 763—769.

[4] T. Yamamoto, X. Chen, An existence and nonexistence theorem for solutions of nonlinear systems and its application to algebraic
equations, Journal of computational and applied mathematics 30 (1990) 87–97.

[5] J. H. He, Approximate solution of nonlinear differential equations with convolution product nonlinearities. Computer methods
in applied mechanics and engineering, 167(1-2), (1998) 69-73.

[6] S. Liao, An optimal homotopy-analysis approach for strongly nonlinear differential equations. Communications in Nonlinear
Science and Numerical Simulation, 15(8), (2010) 2003-2016.

[7] N. A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos, Solitons &
Fractals, 24(5), (2005) 1217-1231.

[8] A. Atangana, A. Akgül, A. and K. M. Owolabi, Analysis of fractal fractional differential equations. Alexandria Engineering Journal,
(2020).

[9] A. Atangana and A. Akgül, Can transfer function and Bode diagram be obtained from Sumudu transform. Alexandria Engineering
Journal, (2020).


