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Some Estimates for the Spin-Submanifold Twisted Dirac Operators

Mehmet Ergen®

?Eskisehir Technical University, Eskisehir, TURKEY

Abstract. In this paper, we generalize lower bound estimates for the eigenvalue estimates of the subman-
ifold twisted Dirac operator on a compact Riemannian Spin—submanifold proved by N. Ginoux and B.
Morel in 2002.

1. Introduction

Defining some structure on the compact Riemannian manifolds as Spin and Spin‘—structure to obtain
information about the topology and geometry of the manifold is the main way for mathematicians. Due
to this feature, many authors have been systematically worked on these structures [2, 3, 7, 16]. One
of the way to obtain these subtle information is the investigation the spectrum of the Dirac operator
[4, 5,7, 10, 13, 14]. The study of Dirac operators on the submanifolds was firstly started by E. Witten
using the hypersurface Dirac operator to prove the positive energy-theorem [20]. Later on, this operator
is investigated by the mathematicians and physicists to obtain subtle information about the topology and
geometry of the manifolds. One of the ways to obtain this subtle information is done by investigating the
spectrum of the Dirac operator [4-7, 9, 10, 14].

Obtaining lower bounds to the eigenvalues of the submanifold Dirac operator firstly was given by
X. Zhang and O. Hijazi in [13] by generalized the results obtained on the hypersurfaces [12, 19]. The
fundemantal tools used to estimate the lower bound are appropriately modified spinorial Levi—Civita
connection and Schrodinger—Lichnerowicz formula.

In this paper, we will consider the generalization of the results for the the submanifolds obtained by N.
Ginoux and B. Morel in [8] coming from the result for hypersurfaces given in [17]. In doing so, as in the
papers of O. Hijazi and X. Zhang [12, 19], they started by restricted the spinor bundle of the Riemannian
Spin—manifold to a submanifold equipped with an induced Riemannian metric. Then, they lifted the
Levi—Civita connections defined on both the Riemannian Spin manifold and its submanifold onto the
spinor bundle built on these manifolds, respectively. Finally, they defined the submanifold Dirac operator
with the help of the spinorial Gauss formula. Some authors called this operator as a twisted Dirac operator
[18]. In this paper we use this naming.

Later on, N. Ginoux and B. Morel in [8] obtain an estimates for the eigenvalues of the twisted Dirac
operator on a compact Riemannian submanifold in terms of the scalar curvature, mean curvature and
Energy—Momentum tensor.
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In this paper, by defining modified spinorial Levi—Civita connections we give estimates containing all
inequalities obtained in [8] as special cases.
We would like to thank Nicolas Ginoux for his support during the prepation of this paper.

2. Twisted Dirac Operator on The Submanifolds

Let M be an (m + n)—dimensional compact Riemannian Spin—manifold and M be an m—dimensional
immersed oriented Riemannian Spin—submanifold in M equipped with the induced Riemannian metric.

Let NM be the normal bundle of M. As we know, the manifolds M and M defines an unique Spin—structure
on the normal bundle NM [8]. Through out the whole paper 5, Syn and §5; denotes the spinor bundles

over the manifolds M, NM and M, respectively. The restricted spinor bundle 5 := 55|  is identified as
follows:

)

g . Sm ® Sy, if n or m is even,
- SM ® SMN (&) SM ® SMN/ Otherwise.

On this restricted spinor bundle exist a Hermitian inner product, denoted by ( , ), such that Clifford multiplication by
a vector of T]\7I| 1S skew—symmetric [15, 16].

As in [8] we denote the induced spinorial Levi—Civita connection on I'($) by Vand V

- {(VSM QId+1d® VSMN) ® (VSM ®Id + Id ® VSun ), if n and m are odd,
- (VSM ®Id +Id ® Vmn ), otherwise.

For a fixed point x € M, let (e, ..., ex, 01, ..., Uy) be a positively oriented local orthonormal basis of T]\7I| " such that
(e1,...,em) (resp(vy, ..., vy)) is a positively oriented local orthonormal basis of TM (resp NM). Also we have the following
identification between the Clifford multiplication on I'(551) and F(Sﬁ)i M

Xy® = (X-a)l-\I/)M, 2)

where ® =W

M,\I/ € I'(55), and

_ | w,, formneven, 3
YL = \~iw,, fornodd,

here w, denoting the complex volume form:
n+l

wy, =7 o - o, 4)

The spinorial Gauss formula [1]:

.Vdi\y = Vi\y +

N —

Z ejhij -\, ®)
=1

where W € I'(5) and /;; is the component of the second fundemantal form at x. Accordingly, Dirac operators are defined
as follows:

m m

5:Zei-$i,D:Zei-Vi, (6)

i=1 i=1

and the twisted Dirac operator which also called submanifold Dirac operator and denoted by Dy, is defined as

Dy = (-1)'w, -D = (-1)"w, - D + %H cw, W, @)
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where H =} h(e;, e;) denotes the mean curvature vector field. Moreover, by using the fact that H- w,- = -1)""'w, -H
i=1

one gets D = D — 1H and
1
D = a)L'DH+§H'wL'

1
= AH'C()J"‘FEH', (8)

where Ay denotes the eigenvalue of the twisted Dirac operator Dy.
Finally, for any W € I'(S), we give the well-known formula called twisted Lichnerowicz formula as follows:

(Dw,w) = (V'V¥,¥)+ }I(R + Ry )PP, )

where R is the scalar curvature of M and R := 2 Y, (ei eI ® RSL’,QJ_\I/, %) on My = {x € M : W(x) # 0}, and R?,-’,e]-
i1

stands for spinorial normal curvature tensor. Combining (8) and (9), we obtain

1 1
f VWP = f (AP + ZIHIPIWE + ApRe(w, - W, H- W) = (R + RY)|PP).
y v 4 4
(10)

3. Lower bounds of Eigenvalues

In this section, two estimates are given. One of them is obtained in terms of the mean curvature and modified scalar
curvature defined in [7, 12, 13] as follows:

Ryuw = R+ RY, — 4pVu + 4VpVu — 4(1 - %)p2|du|2, (11)

where p and u are real valued functions defined on M. If pu =0, then R,,w = R+ R@. In this case all estimates
coincides with the result obtained in [8]. The other is obtained in terms of above modified scalar curvature and
Energy—Momentum tensor.

In the following theorem, we give an optimal lower bound to the eigenvalues of Dy by using an appropriate
modified spinorial Levi—Civita connection.

Theorem 3.1. Let M C M be a compact Riemannian Spin—submanifold of a Riemannian Spin—manifold M, g). Consider a
non—trivial eigenspinor field ¥V € I'(S) such that DyW = Ag\V. Assume that m > 2 and

Qp,u,\y = {(P/ u, \y)|me,u,\I/ > (m - 1)”H||2 > O}/ (12)

on My where p, u are real—valued functions. Then the following inequality is satisfied

1 m 2
AL > Ssupln ——R,,w —IHI) . (13)
H 4QpﬂM\{f(‘\1m—1 y )

Proof. Define a modified spinorial Levi—Civita connection on I'($) by
ViV = V¥ + ad-H- W+ BAne; - wy - W+ pViuW +qVjue; -e; - WV (14)
for any real—valued functions a, 8, p and 4. Then, for any W € I'($) and for any i, 1 <i < n, we have
VAWP = [VWP +2aRe(ViW, e; - H- W) + 2AupRe(ViW, ;- w, - W)

+2pRe(V;W, VW) + 2qRe(ViW, Vjue; - ¢; - W) + o[ H|P W[

+2apAuRe(e;- H- W, e; - w, - W) + 2apRe(e; - H- W, ViurP)

+2aqRe(e; - H- W, Viue; - ¢ - W) + fA%| WP

+2,8p/\HRe(ei cw, -V, Viu‘I/) + Zﬁq)LHRe(ei cwy W, Viue; e \I’)

+P?IViulPWP + 2pqRe(Viur¥, Viue; - e; - W)

+P | dul VP (15)
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Summing over i and using the fact that (a) -V, \I’) = (—1)"(‘1’, w, - \I/), we have
IV'WP = VPP - 2aRe(DW, H - W) - 2AupRe(DY, w, - )
+2p Y ViuRe(ViW, W) + ma?[HIPIWP + 2mapAuRe(H - W, @, - W)
i=1
—2apRe(H - W, du - W) + 2maqRe(H - W, du - W) + mp2 A% WP
—Z‘Bp)\HRe(a)l W, du - ‘I’) + 2111ﬁq)\HRe(a)l W, du - \I/) + pzlalulzl\l/l2

—2pq|dul| VP + mg?|dul* W . (16)
Takingg=£,a = %, for B nowhere equal to 1 and using the equality obtained in (10), we get
(R+RY) 1
2 2 (w2 W 21,12
fM (1 + mp” — 25))\H|‘I’| > L (T + (1 - E)p |dul* — pAu + Vqu)
m*B? —2mB —mp? +2B—1)
- HI|[? )2 17
( TR JIHIP )] (17)
Using modified scalar curvature given in (11), we have
1 . R u\¢V (m - 1)
2 > P _ 2 1
Az 4,575};11;[(“%2_% 1 I ) (18)
Then, assuming mR,,,,w > (m — 1)||H | > 0 on My, we can choose B so that
- 1I||H]
(A —mpyt = — = DU, 19)
% pu, ¥ T ”H”
Inserting (19) in (18) we get (13). O
As in [8], k1 be the lowest eigenvalue of the self—adjoint operator RN defined by
RN:TGB) — T(5)
Vo 2) eei [dORY, W (20)
i=1
Considering (20), tranforms the R,y as follows
Ry = R+ 11 = 4pVu + 4VpVu — 4(1 - %)p2|du|2, 1)

By using (21), Theorem (3.1) can be stengthened as follows:
Corollary 3.2. Under the same conditions as in Theorem (3.1), if m > 2 and

Qv = {(p, k1, 0)lmR, 4 ww > (m = DIHIP > 0)

1 m 2
Ny oz g sup Inf(‘/me,Kl,u,\y—HHH). (22)
Q \yM‘V

(ZSPA

on M, then

In this part of the paper, concerning conformal change of the Riemannian metric and using the classic arguments
given in [11-13], the optimal lower bounds is given for the square of the eigenvalue Ay of the twisted submanifold
Dirac operator Dy.
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Consider the conformal change of the metric § = ¢?*g given with any real-valued function u on M. Let
s — S
Y o— U (23)

be the induced isometry between the two corresponding spinor bunbles. The Hermitian metrics defined on the
corresponding two spinor bundles $ and S, respectively satisfies:

v,0) = (¥, D). 24
(w,)=(¥,9), @
Also, the Clifford multiplication on $ is defined as

e =g -, (25)

where ¢; = ¢7"¢;. Note that, g = e*g|,  is denoted the restriction of g to M. Under this restriction, the following identity
are satisfied:
_(m=1) _(m#1)

5(6 P “W):e T DV, (26)

where W € I'(S) and D is the Dirac operator with respect to 7. Also, the corresponding mean curvature vector field is
given by

H= e’z“(H - mgmdNu). 27)
Let grad¥u = 0, then with respect to g, the corresponding twisted Dirac operator Dy satisfies:
Di(e”"7"F) = ¢ 5DV (8)
Finally, under the conformal change of the metric g = ey, le,u,\y is written as
Ep,m,u,\y = R+ + 4(7117—1 - p)Au +4VpVu — ((m -1)(m—-2)+42-m)p
+4(1 - %)pz)ldulz. (29)

In the next theorem, we will consider the regular conformal change of the metric 7 with grad¥u = 0, on M.

Theorem 3.3. Let M C M be a compact Riemannian Spin—submanifold of a Riemannian Spin—manifold M, g). Consider a

non—trivial eigenspinor field W € T(8) such that DyW = Ay\W. For any regular conformal change of the metric g = e*g on M,
assume that . _
Qp,xl,u,\ll = {(P/ K1, u)|me,K1,u,\I’ > (m - l)HH”z > 0}

on My. Then the following inequality is satisfied

1 m — 2
Ny oz g sup Inf(,/—m_ 1Rp,,q,u,u,—an). (30)
O M

Qp,kl,u,‘l’ v

n=1

Proof. Let W € T'(8) be an eigenspinor of Dy with eigenvalue Ay and let ¢ := e=*7 “W. Then, by condidering D¢ =
Ape™®, H = ¢™H, Eg = ¢2RY and applying @ to (17), we get

fM (1+mﬁ2—2ﬁ)e-2u§|6|2 > fM }l(ﬁp,,q,u,w

m?B? —2mpB —mp? + 28— 1) N\ oui
~( =1y 115153 e T
(31)
As in the proof of Theorem 3.1, by considering
a-mpp = —LZ DL oo, (2

%Rp,}q,u,‘lf - ”H”

we get the desired estimates given in (30). [
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In the following theorem we improve our estimation in terms of the Energy—Momentum tensor Q¥ defined on My as
follows:

, 1 v
3 = E(ei-wl~vj\lf+ej-wl-vi\ll, W) (33)

Theorem 3.4. Let M C M be a compact Riemannian Spin—submanifold of a Riemannian Spin—manifold M, g). Consider a
non—trivial eigenspinor field W € I'(8) such that DyW = Ay\V. Assume that m > 2 and

¥4
Qf = {(p, 11, WIRyxp uw +4QYF > HIP > 0}, (34)

P ¥

on M\p- Then thefollowzng inequality is sutisfied
/\2 > 1 w2
i - Sup ll’lf( Rp,,q,, vt 4IQ | - ||11||) . (35)

Proof. Define a modified spinorial Levi—Civita connection on I'(5) by
VW = VWad H W4 BAe - @, W 4 pViuW + qVue; - e W
+Qjej-w. Y, (36)

where a, 8, p and g are real-valued functions. Then, for any W € I'(S) and for any i, 1 <i <, we have

VWP = VWP + 2aRe(ViW, e H - W) + 2AupRe(ViW, ;- . -

i - i i, Hﬁ e(vl\yl 6w, \P)
+2pRe(Vi\I’, Viu\lf) + ZqRe(Vi\I’, Viue; - e; - \I/)
+2Re(ViW, Qle; - w, - W) + || HIP[WP
+2apAnRe(e;- H- W, e; - w, - ¥) + 2apRe(e; - H- W, ViuP)
+2aqRe(e,- “H-W,V;ue; -¢; ~\I’) + ZaRe(e,- -H-VY, Q;I;E]' ‘w, - \I/)
+B 2P + 28pAnRe(e - @, - W, VW)
+2ﬁq/\HRe(ei cwy W, Vjue; - e - \If)
+2ﬁ/\HRe(e,~ cw, -V, Q;j-}ej cwy - ‘I’) + PV WP
+2que(Viu\If, Vue; - e - ‘I’) + ZpRe(Viu\Il, Qg.’e]- ‘W, - \I’)
+P1AuPWP + 2qRe(Vyei e - W, Qe w, - W) + QY IWP.

(37)
Summing over i and using the fact that trQ¥ = Ay + %Re(H -\, %), we have
VEWR = VWP - 2AhaRe(w, - W, H - W) - al[ HIPPP - 2028101

~AupRe(H - W, 0, - W) +2p i Re(V,W, Viur®) - 21Q" 2| WP

i=1

+ma?|[HIPIWP + 2mapAuRe(H - W, w, - W) - 2apRe(H - W, du - W)
+2maqRe(H - W, du - W) + 2aAuRe(H - ¥, 0, - W)

2
aRe(HJI/,wL-\I/) 5 5 e
+ T WP + mAZ AW - 20 pppRe(w, - W, du - W)
+2AapgmRe(w, - W, du - W) + 2A3BWP + AppRe(H - ¥, w, - P)

+PPldul WP — 2pgldul| WP + mg*ldul| WP +1Q% PWP.

(38)
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Taking g = £, and using the equality obtained in (10), we get
Q¥\ye _ 222_1 N\ny 2 _1222
fM ve'wpR = fM((1 +mp)A% || 4(R +RN)WP + (1 m)p EMRNY

+(pAy = VpVu) WP + (1 + 2map)Re(H - W, w, - W) - [Q¥ P|WP

aRe(H W@, - \If)2

1 2 2012 2
+(Z +ma? - o) [HIPWP + T W P2).
Using the definition given in (21) and taking a = —Z;—Iﬁ we get

Ry w 1+ mp? 1
2\42 2 PR, 2 2 2 2
fM[(1+mﬁ AP > fM( e ( poE: I W] ——Zmﬁ(IIHH

Re(H- W, 0, - 0)

o [PP) + IQ“’IZI‘I’IZ)

2
RE(H"{I,CL)J_'W)
Since ||H||> - [W)? > 0, we have

W
we have
Ry uw +4Q°F  ||HIP?

A2 Ziﬁf( 1+ mp? mp? )

If Ry uw +41QF > [IH|? > 0 on My, we can choose f as

H|
. T .
(1 Ry + A1QF — I1H1)

O

14

(39)

(40)

(41)

(42)

In the next theorem, we will consider regular conformal change of the metric g with gmdN u =0, on M as in Theorem

3.3).

Theorem 3.5. Let M C M be a compact Riemannian Spin—submanifold of a Riemannian Spin—manifold M, g). Consider a
non—trivial eigenspinor field W € I'(8) such that Dy = AyW. For any reqular conformal change of the metric g = e*g on M,

assume that
_Q‘l’
Qp,k’l,u,\ll =
on My. Then the following inequality is satisfied

A2 > 1su Inf(\m +4|Q|2—||H||)2
H = 4 14 pxyu,WY .

24 M
a2 v

(ST

{(p, 11, IRy w + 41QY P > [HIP > 0}

where p, u are real—valued functions.

Proof. As in Theorem (3.3, applying @ to (40), we get

1+mp?)

fM (1+mpe A2 ioP > fM }I(Ep,m,u,w+4|Q“’|2—( o IR )e=2 [P

As in the proof of Theorem 3.3, we finally by taking

5 - [
1 \[Ry v+ 4QVE ~ 1H)

we obtained the desired result given in (43). O

(43)

(44)

(45)
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