Smarandache Curves of Spatial Quaternionic Bertrand Curve According to Frenet Frame

Süleyman Şenyurt^a, Ceyda Cevahir Yıldız^b, Yasin Altun^c

 ^aDepartment of Mathematics, Faculty of Arts and Sciences, Ordu University, 52200, Ordu/Turkey
 ^bDepartment of Mathematics, Institute of Science Ordu University, 52200, Ordu/Turkey
 ^cDepartment of Mathematics, Institute of Science Ordu University, 52200, Ordu/Turkey

Abstract. In this study, Frenet vectors of spatial quaternionic Bertrand curve pair were taken as the position vector. The obtained Smarandache curves from position vector were defined. Frenet vectors, the curvature and torsion of this curve were calculated. This later the Frenet apparatus were expressed in terms of Frenet apparatus of the spatial quaternionic Bertrand curve pair. Example related to the subject was found and their drawings were done with Maple program.

1. Introduction

Quaternion was first introduced by the Irish mathematician William Rowan Hamilton in 1843 in the form of generalized complex numbers. Each quaternion is accompanied by four units $\{1, e_1, e_2, e_3\}$, [9]. In 1987, Bharathi, K. and Nagaraj, M.'s "Quaternion Valued Function of a Real Variable Serret-Frenet Formulae" named article have shed light to many studies related to quaternions. In recent years, many studies have been done on quaternions. These studies are found in [2–4, 6–9, 13, 14, 16]. Many studies have been done on special curves in differential geometry. Studies on one of these, the Bertrand curve, are see in [17, 18]. Some studies of Smarandache curves are available in [1, 9–13, 15].

2. Preliminaries

A real quaternion is defined with q of the form $\mathbf{Q} = \{q | q = d + ae_1 + be_2 + ce_3, d, a, b, c \in \mathbb{R}, e_1, e_2, e_3 \in \mathbb{R}^3\}$ such that

 $\begin{array}{rcl} e_1^2 & = & e_2^2 = e_3^2 = -1 \ , & e_1 \times e_2 = -e_2 \times e_1 = e_3, \\ e_1 & \times & e_3 = -e_3 \times e_1 = e_2 \ , & e_2 \times e_3 = -e_3 \times e_2 = e_1. \end{array}$

Corresponding author: SŞ mail address: senyurtsuleyman52@gmail.com ORCID: https://orcid.org/0000-0003-1097-5541, CCY ORCID: https://orcid.org/0000-0002-9498-4930,YA ORCID: https://orcid.org/0000-0002-6977-4958

Received: 23 April 2020; Accepted: 10 September 2020; Published: 31 October 2020

Keywords. Smarandache curves, quaternionic Bertrand curve, spatial quaternion

²⁰¹⁰ Mathematics Subject Classification. 53A04

Cited this article as: Şenyurt S, Yıldız CC, Altun Y. Smarandache Curves of Spatial Quaternionic Bertrand Curve According to Frenet Frame. Turkish Journal of Science. 2020, 5(2), 49-62.

We put $S_q = d$ and $V_q = ae_1 + be_2 + ce_3$. Then a quaternion *q* can rewrite as

$$q = S_q + V_q$$

where S_q and V_q are the scalar part and vectorial part of q, respectively, [5]. For $q_1 = S_{q_1} + V_{q_1}$, $q_2 = S_{q_2} + V_{q_2}$ quaternions, quaternionic summation, multiplication and conjugate operations are, respectively

$$q_{1} + q_{2} = S_{q_{1}} + V_{q_{1}} + S_{q_{2}} + V_{q_{2}} = S_{q_{1}+q_{2}} + V_{q_{1}+q_{2}}$$

$$q_{1} \times q_{2} = S_{q_{1}}S_{q_{2}} - \langle V_{q_{1}}, V_{q_{2}} \rangle + S_{q_{1}}V_{q_{2}} + S_{q_{2}}V_{q_{1}} + V_{q_{1}} \wedge V_{q_{2}}$$

$$\bar{q} = S_{q_{1}} - V_{q_{1}}$$

These expression the symmetric real-valued, non-degenerate, bilinear form as follows,

$$\langle,\rangle|_{\mathbf{Q}}: \mathbf{Q} \times \mathbf{Q} \to \mathbb{R}, \langle q_1, q_2 \rangle|_{\mathbf{Q}} = \frac{1}{2}(q_1 \times \bar{q_2} + q_2 \times \bar{q_1}).$$

It is called the quaternionic inner product, [5]. Then the norm of *q* is

$$N(q) = \sqrt{\langle q, q \rangle|_{\mathbf{Q}}} = \sqrt{q \times \bar{q}},$$

A spatial quaternion set define that $\mathbf{Q}_H = \{q \in \mathbf{Q} | q + \bar{q} = 0\}$, [2]. Let I = [0, 1] be an interval in the real line **R** and $s \in I$ be the are-length parameter along the smooth curve, [7]

$$\gamma: [0,1] \to \mathbf{Q}_H, \, \gamma(s) = \sum_{i=1}^3 \gamma_i(s) e_i, \ (1 \le i \le 3).$$
 (1)

The tangent vector $\gamma'(s) = t(s)$ has unit length N(t(s))=1 for alls, [2]. Let γ be a differentiable spatial quaternions curve with arc-length parameter *s* and {*t*(*s*), *n*₁(*s*), *n*₂(*s*)} be the Frenet frame of γ at the point $\gamma(s)$, [6],

$$t(s) = \gamma'(s), \quad n_1(s) = \frac{\gamma''(s)}{N(\gamma''(s))}, \quad n_2(s) = t(s) \times n_1(s), \tag{2}$$

Let {*t*(*s*), *n*₁(*s*), *n*₂(*s*)} be the Frenet frame of γ (*s*). Then Frenet formulae, curvature and the torsion are given by [6]

$$t'(s) = k(s)n_1(s),$$
(3)

$$n_1'(s) = -k(s)t(s) + r(s)n_2(s),$$

$$n_2'(s) = -r(s)n_1(s)$$

where t(s), $n_1(s)$ and $n_2(s)$ are the unit tangent, the unit principal normal and the unit binormal vector of a quaternionic curve, respectively, [2, 8].

Let {k(s), r(s)} be the curvatures of $\gamma(s)$. Then curvature and the torsion are given by[6]

$$k_{\beta_{1}} = \frac{N(\beta' \times \beta'')}{N(\beta')^{3}}$$

$$r_{\beta_{1}} = \frac{\langle \beta' \times \beta'', \beta''' \rangle|_{Q}}{\left(N(\beta' \times \beta'')\right)^{2}}.$$
(4)

Definition 2.1. Let $\alpha : I \to \mathbf{Q}_H$ unit speed and $\alpha^* : I \to \mathbf{Q}_H$ differentiable two spatial quaternionic curves. If the principal normal vector n_1 of the curve α is linearly dependent on the principal vector n_1^* of the curve α^* , then the pair (α, α^*) is defined to be quaternionic Bertrand curves pair, [7].

50

If the curve α^* is Bertrand partner of α and n_1 principal vector of α , then we may write that

$$\alpha^*(s) = \alpha(s) + \lambda n_1(s) , \quad \lambda = constant.$$
(5)

Theorem 2.2. Let (α, α^*) be a quaternionic Bertrand pair curves in \mathbf{Q}_H . The relations between the Frenet frames $\{t, n_1, n_2\}$ and $\{t^*, n_1^*, n_2^*\}$ are as follows

$$t^{*}(s) = \cos \theta t + \sin \theta n_{2}, \qquad (6)$$

$$n_{1}^{*}(s) = n_{1}, \qquad (7)$$

$$n_{2}^{*}(s) = -\sin \theta t + \cos \theta n_{2}$$

where $\angle(t, t^*) = \theta$, [7].

Theorem 2.3. Let (α, α^*) be a quaternionic Bertrand pair curves in \mathbf{Q}_H . For the curvatures and the torsions of the Bertrand curves pair (α, α^*) we have

$$k^{*}(s)\frac{ds^{*}}{ds} = \cos\theta k - \sin\theta r, \qquad (7)$$
$$r^{*}(s)\frac{ds^{*}}{ds} = \sin\theta k + \cos\theta r, [7].$$

3. Smarandache Curves of Spatial Quaternionic Bertrand Curve according to Frenet Frame

Frenet vectors of a curve are taken as position vector and a regular curve is defined with this vector. This curve is called as Smarandache curve, [15]. In this study, (α^*, α) will be defined as quaternionic Bertrand curve pair. Curve α^* will be taken as main curve and the other curve α will be taken as Bertrand partner curve of curve α^* . Frenet vectors of α^* curve taken from the curve pair will be taken as position vector. Smarandache curves' Frenet apparatus defined by these position vectors will be calculated. The resulting Frenet apparatus will be expressed Frenet apparatus denominated belonging to α^* curve by using connecting equation between Bertrand curve pair Frenet apparatus.

Definition 3.1. Let (α, α^*) be a quaternionic Bertrand pair curves in \mathbf{Q}_H . If Frenet frame of curve α^* is shown with $\{t^*, n_1^*, n_2^*\}$,

$$\beta_1(s) = \frac{1}{\sqrt{2}}(t^* + n_1^*) \tag{8}$$

regular curve drawn by vectors t^* and n_1^* is called spatial quaternionic Smarandache curve β_1 .

Theorem 3.2. Frenet vectors of Smarandache curve β_1 are given as follows;

$$t_{\beta_{1}(s)} = \frac{-k^{*}t^{*} + k^{*}n_{1}^{*} + r^{*}n_{2}^{*}}{\sqrt{2k^{*2} + r^{*2}}}, \quad n_{1\beta_{1}}(s) = \frac{\omega_{1}t^{*} + \phi_{1}n_{1}^{*} + \sigma_{1}n_{2}^{*}}{\sqrt{\omega_{1}^{2} + \phi_{1}^{2} + \sigma_{1}^{2}}},$$

$$n_{2\beta_{1}}(s) = \frac{(k^{*}\sigma_{1} - r^{*}\phi_{1})t^{*} + (k^{*}\sigma_{1} + r^{*}\omega_{1})n_{1}^{*} + (-k^{*}\phi_{1} - k^{*}\omega_{1})n_{2}^{*}}{\sqrt{(\omega_{1}^{2} + \phi_{1}^{2} + \sigma_{1}^{2})(2k^{*2} + r^{*2})}}.$$
(9)

Herein, the coefficients are

$$\begin{aligned}
\omega_1 &= -k^{*2}(2k^{*2} + r^{*2}) - r^*(r^*k^{*'} - k^*r^{*'}), \\
\phi_1 &= -k^{*2}(2k^{*2} + 3r^{*2}) - r^*(r^{*3} - r^*k^{*'} + k^*r^{*'}), \\
\sigma_1 &= k^*r^*(2k^{*2} + r^{*2}) - 2k^*(r^*k^{*'} - k^*r^{*'}).
\end{aligned}$$
(10)

Proof. If derivative according to s_{β_1} are parameter of curve $\beta_1(s)$ is taken, $t_{\beta_1}(s)$ and $t'_{\beta_1}(s)$ are given, respectively

$$t_{\beta_1(s)} = \frac{-k^* t^* + k^* n_1^* + r^* n_2^*}{\sqrt{2k^{*2} + r^{*2}}}, \quad t_{\beta_1}'(s) = \frac{\sqrt{2} \left(\omega_1 t^* + \phi_1 n_1^* + \sigma_1 n_2^*\right)}{\left(2k^{*2} + r^{*2}\right)^2}.$$
 (11)

Herein, the coefficients are as seen in (10). From equation (2), principal vector $n_{1\beta_1}$ and binormal vector $n_{2\beta_1}$ are found as in (9).

Theorem 3.3. Curvature and torsion belonging to Smarandache curve β_1 are, respectively

$$k_{\beta_1} = \frac{\sqrt{2(\omega_1^2 + \phi_1^2 + \sigma_1^2)}}{\left(2k^{*2} + r^{*2}\right)^2}, r_{\beta_1} = \frac{\sqrt{2}\left(x_1\eta_1 + y_1\theta_1 + z_1\rho_1\right)}{x_1^2 + y_1^2 + z_1^2}$$
(12)

where coefficients are

$$\eta_{1} = k^{*3} + k^{*}(r^{*2} - 3k^{*'}) - k^{*''}, \quad \theta_{1} = -k^{*3} - k^{*}(r^{*2} + 3k^{*'}) - 3r^{*}r^{*'} + k^{*''},$$

$$\rho_{1} = -k^{*2}r^{*} - r^{*3} + 2r^{*}k^{*'} + k^{*}r^{*'} + r^{*''},$$

$$x_{1} = r^{*}(2k^{*2} + r^{*2}) + k^{*}r^{*'} - k^{*'}r^{*}, \quad y_{1} = k^{*'}r^{*} - k^{*}r^{*'}, \quad z_{1} = 2k^{*3} + k^{*}r^{*2}.$$
(13)

Proof. First, second and third derivatives of curve β_1 are, respectively

$$\beta_{1}{'} = \frac{-k^{*}t^{*} + k^{*}n_{1}^{*} + r^{*}n_{2}^{*}}{\sqrt{2}}$$
$$\beta_{1}{''} = \frac{-(k^{*2} + k^{*'})t^{*} + (k^{*'} - k^{*2} - r^{*2})n_{1}^{*} + (k^{*}r^{*} + r^{*'})n_{2}^{*}}{\sqrt{2}},$$
$$\beta_{1}{'''} = \frac{\eta_{1}t^{*} + \theta_{1}n_{1}^{*} + \rho_{1}n_{2}^{*}}{\sqrt{2}}$$

where the coefficients are as seen in (13). From (4) equation, curvatures are found as in (12). \Box

Corollary 3.4. Let (α, α^*) be a spatial quaternionic Bertrand curve pair in \mathbf{Q}_H . The expressions of Frenet vectors of Smarandache curve β_1 in terms of Frenet apparatus of Bertrand partner curve are as follows:

$$t_{\beta_{1}}(s) = \frac{-kt + (\cos\theta - \sin\theta)n_{1} + rn_{2}}{\sqrt{k^{2} + r^{2} + (\cos\theta k - \sin\theta)^{2}}}, \quad n_{1\beta_{1}}(s) = \frac{\bar{\omega}_{1}t + \bar{\phi}_{1}n_{1} + \bar{\sigma}_{1}n_{2}}{\sqrt{\bar{\omega}_{1}^{2} + \bar{\phi}_{1}^{2} + \bar{\sigma}_{1}^{2}}},$$

$$n_{2\beta_{1}}(s) = \frac{((k\cos\theta - r\sin\theta)\bar{\sigma}_{1} - r\bar{\phi}_{1})t + (k\bar{\sigma}_{1} + r\bar{\omega}_{1})n_{1}}{\sqrt{(k^{2} + r^{2} + (\cos\theta k - \sin\theta)^{2})(\bar{\omega}_{1}^{2} + \bar{\phi}_{1}^{2} + \bar{\sigma}_{1}^{2})}},$$

$$(14)$$

$$-\frac{(k\bar{\phi}_{1} + (k\cos\theta - r\sin\theta)\bar{\omega}_{1})n_{2}}{\sqrt{(k^{2} + r^{2} + (\cos\theta k - \sin\theta)^{2})(\bar{\omega}_{1}^{2} + \bar{\phi}_{1}^{2} + \bar{\sigma}_{1}^{2})}}.$$

Herein, coefficients are

$$\bar{\omega}_1 = (-k^{'} - k^2 \cos \theta + kr \sin \theta)(k^2 + r^2 + (k \cos \theta - r \sin \theta)^2) + k(k^2 + r^2 + (k \cos \theta - r \sin \theta)^{'},$$

$$\bar{\phi}_1 = (-k^2 - r^2 + k'\cos\theta - r'\sin\theta)(k^2 + r^2 + (k\cos\theta - r\sin\theta)^2) -(k\cos\theta - r\sin\theta)(k^2 + r^2 + (k\cos\theta - r\sin\theta)^2)',$$

$$\bar{\sigma}_1 = (kr\cos\theta - r^2\sin\theta + r')(k^2 + r^2 + (k\cos\theta - r\sin\theta)^2) -r(k^2 + r^2 + (k\cos\theta - r\sin\theta)^2)'.$$

Proof. If expression (6) instead of t^* and n_1^* in curve β_1 is written, we have

$$\beta_1(s) = \frac{1}{\sqrt{2}} \Big(\cos \theta t(s) + n_1(s) + \sin \theta n_2(s) \Big)$$

If equations (6) and (7) into equation (9) and (25) are written, the proof is completed. \Box

Corollary 3.5. Let (α, α^*) be a spatial quaternionic Bertrand curve pair in \mathbf{Q}_H . The expressions of curvatures of Smarandache curve β_1 in terms of Frenet apparatus of Bertrand partner curve are as follows:

$$k_{\beta_1} = \frac{\sqrt{\bar{\omega}_1^2 + \bar{\phi}_1^2 + \bar{\sigma}_1^2}}{\left(k^2 + r^2 + (\cos\theta k - \sin\theta)^2\right)^{\frac{3}{2}}}, \quad r_{\beta_1} = \sqrt{2}\frac{\bar{x}_1\eta_1 + \bar{y}_1\bar{\theta}_1 + \bar{z}_1\bar{\rho}_1}{\bar{x}_1^2 + \bar{y}_1^2 + \bar{z}_1^2}.$$
(15)

Herein, coefficients are

$$\bar{\eta_1} = (-k'-k^2\cos\theta + kr\sin\theta)' - k(-k^2 - r^2 + (k\cos\theta - r\sin\theta)'),$$

$$\bar{\theta_1} = k(-k'-k^2\cos\theta + kr\sin\theta) + (-k^2 - r^2 + (k\cos\theta - r\sin\theta)')' - r(kr\cos\theta - r^2\sin\theta + r'),$$

$$\bar{\rho_1} = r(-k^2 - r^2 + (k\cos\theta - r\sin\theta)') + (kr\cos\theta - r^2\sin\theta + r')',$$

$$\bar{x}_1 = (k\cos\theta - r\sin\theta)(kr\cos\theta - r^2\sin\theta + r') - r(-k^2 - r^2 + (k\cos\theta - r\sin\theta)'),$$

$$\bar{y}_1 = k(kr\cos\theta - r^2\sin\theta + r') + r(-k' - k^2\cos\theta + kr\sin\theta),$$

$$\bar{z}_1 = -(k(-k^2 - r^2 + (k\cos\theta - r\sin\theta)') + k(k\cos\theta - r\sin\theta))$$
$$.(-k' - k^2\cos\theta + kr\sin\theta).$$

Proof. If equations (6) and (7) into equation (12) and (13) are written, the proof is completed. \Box

Definition 3.6. Let (α, α^*) be a quaternionic Bertrand pair curves in \mathbf{Q}_H . If Frenet frame of curve α^* is shown with $\{t^*, n_1^*, n_2^*\}$,

$$\beta_2(s) = \frac{(n_1^* + n_2^*)}{\sqrt{2}} \tag{16}$$

regular curve drawn by vectors n_1^* and n_2^* is called spatial quaternionic Smarandache curve β_2 .

Theorem 3.7. The Frenet vectors of Smarandache curve β_2 are given as follows:

$$t_{\beta_{2}}(s) = \frac{-kt^{*} - rn_{1}^{*} + rn_{2}^{*})}{\sqrt{2r_{2}^{*} + k_{2}^{*}}}, \quad n_{1\beta_{2}}(s) = \frac{\omega_{2}t^{*} + \phi_{2}n_{1}^{*} + \sigma_{2}n_{2}^{*}}{\sqrt{\omega_{2}^{2} + \phi_{2}^{2} + \sigma_{2}^{2}}},$$

$$n_{2\beta_{2}}(s) = \frac{-r^{*}(\sigma_{2} + \phi_{2})t^{*} + (r^{*}\omega_{2} + k^{*}\sigma_{2})n_{1}^{*} + (-k^{*}\phi_{2} + r^{*}\omega_{2})n_{2}^{*}}{\sqrt{(\omega_{2}^{2} + \phi_{2}^{2} + \sigma_{2}^{2})(2r^{*2} + k^{*2})}}.$$
(17)

Herein, the coefficients are

$$\begin{aligned}
\omega_2 &= 2r^{*2}(-k^{*'} + r^*r^*) + k^*r^*(k^{*2} + 2r^{*'}), \\
\phi_2 &= k^*(-k^{*3} - r^{*'}k^* + r^*k^{*'}) - r^{*2}(3k^{*2} + 2r^{*2}), \\
\sigma_2 &= k^{*2}(r^{*'} - r^{*2}) - r^*(2r^{*3} + k^*k^{*'}).
\end{aligned}$$
(18)

Proof. If derivative is taken according to s_{β_2} arc parameter of curve $\beta_2(s)$, $t_{\beta_2}(s)$ and $t'_{\beta_2}(s)$ are given, respectively

$$t_{\beta_2(s)} = \frac{-k^*t^* - r^*n_1^* + r^*n_2^*}{\sqrt{2k^{*^2} + r^{*^2}}}, \quad t_{\beta_1}'(s) = \frac{\sqrt{2}(\omega_2 t^* + \phi_2 n_1^* + \sigma_2 n_2^*)}{\left(2k^{*^2} + r^{*^2}\right)^2}.$$

Herein, the coefficients are as seen in (18). From equation (2), principal vector $n_{1\beta_2}$ and binormal vector $n_{2\beta_2}$ are found as in (17).

Theorem 3.8. Curvature and torsion belonging to Smarandache curve β_2 are, respectively

$$k_{\beta_2} = \sqrt{2} \frac{\sqrt{\omega_2^2 + \phi_2^2 + \sigma_2^2}}{\left(k^{*2} + 2r^{*2}\right)^2}, \quad r_{\beta_2} = \sqrt{2} \frac{x_2 \eta_2 + y_2 \theta_2 + z_2 \rho_2}{x_2^2 + y_2^2 + z_2^2}$$
(19)

where coefficients are

$$\eta_{2} = -r^{*3}k^{*} + k^{*3} + k^{*'}r^{*} + 2k^{*}r^{*'} - k^{*''},$$

$$\theta_{2} = r^{*3} - r^{*}k^{*2} - 3k^{*}k^{*'} + 3r^{*2}r^{*'} - r^{*'},$$

$$\rho_{2} = r^{*3} + r^{*}k^{*2} - 3r^{*}r^{*'} - r^{*}r^{*''},$$

$$x_{2} = r^{*}(2r^{*2} + k^{*2}), \quad y_{2} = k^{*}r^{*'} - r^{*}k^{*'}, \quad z_{2} = k^{*}(k^{*2} + 2r^{*2} + r^{*'}) - r^{*}k^{*'}.$$
(20)

Proof. First, second and third derivatives of curve β_2 are, respectively

$$\beta_{2}^{\;'} = \frac{-k^{*}t^{*} - r^{*}n_{1}^{*} + r^{*}n_{2}^{*}}{\sqrt{2}}$$
$$\beta_{2}^{\prime\prime} = \frac{(-k^{*} + r^{*}k^{*})t^{*} - (k^{*2} - k^{*2} + r^{*2} + r^{*'})n_{1}^{*} + (r^{*'} - r^{*2})n_{2}^{*}}{\sqrt{2}},$$
$$\beta_{2}^{\prime\prime\prime} = \frac{\eta_{2}t^{*} + \theta_{2}n_{1}^{*} + \rho_{2}n_{2}^{*}}{\sqrt{2}}$$

where the coefficients are as seen in (20). From (4) equation, curvatures are found as in (19). \Box

54

Corollary 3.9. Let (α, α^*) be a spatial quaternionic Bertrand curve pair in \mathbf{Q}_H . The expressions of Frenet vectors of Smarandache curve β_2 in terms of Frenet apparatus of Bertrand partner curve are as follows:

$$t_{\beta_{2}}(s) = \frac{-kt - (\sin\theta + \cos\theta r)n_{1} + rn_{2}}{\sqrt{k^{2} + r^{2} + (\sin\theta + \cos\theta r)^{2}}}, \quad n_{1\beta_{2}}(s) = \frac{\bar{\omega}_{1}t + \bar{\phi}_{1}n_{1} + \bar{\sigma}_{1}n_{2}}{\sqrt{\bar{\omega}_{1}^{2} + \bar{\phi}_{1}^{2} + \bar{\sigma}_{1}^{2}}},$$

$$n_{2\beta_{2}}(s) = \frac{-(\bar{\sigma}_{2}(k\sin\theta + r\cos\theta) + r\bar{\phi}_{2})t + (k\bar{\sigma}_{2} + r\bar{\omega}_{2})n_{1}}{\sqrt{(k^{2} + r^{2} + (k\sin\theta + r\cos\theta)^{2})(\bar{\omega}_{2}^{2} + \bar{\phi}_{2}^{2} + \bar{\sigma}_{2}^{2})}},$$

$$+\frac{(-k\bar{\phi}_{2} + (k\sin\theta + r\cos\theta)\bar{\omega}_{2})n_{2}}{\sqrt{(k^{2} + r^{2} + (k\sin\theta + r\cos\theta)\bar{\omega}_{2})n_{2}}}.$$
(21)

Herein, the coefficients are

$$\bar{\omega}_2 = (-k' + k(k\sin\theta + r\cos\theta))(k^2 + r^2 + (k\sin\theta + r\cos\theta)^2) + k(k^2 + r^2 + (k\sin\theta + r\cos\theta)^2)',$$

$$\bar{\phi}_2 = (-k^2 - r^2 - (k'\sin\theta - r'\cos\theta))(k^2 + r^2 + (k\sin\theta + r\cos\theta)^2) + (k\sin\theta + r\cos\theta)(k^2 + r^2 + (k\sin\theta + r\cos\theta)^2)',$$

$$\bar{\sigma}_2 = (-r(k\sin\theta + r\cos\theta) + r')(k^2 + r^2 + (k\sin\theta + r\cos\theta)^2) -r(k^2 + r^2 + (k\sin\theta + r\cos\theta)^2)'.$$

Proof. If expression (6) instead of n_1^* and n_2^* in curve β_2 is written, we have

$$\beta_2(s) = \frac{1}{\sqrt{2}} \Big(-\sin\theta t + n_1 + \cos\theta n_2 \Big)$$

If equations (6) and (7) into equation (17) and (18) are written, the proof is completed. \Box

Corollary 3.10. Let (α, α^*) be a spatial quaternionic Bertrand curve pair in \mathbf{Q}_H . The expressions of curvatures of Smarandache curve β_2 in terms of Frenet apparatus of Bertrand partner curve are as follows:

$$k_{\beta_2} = \sqrt{2} \frac{\sqrt{\bar{\omega}_2^2 + \bar{\phi}_2^2 + \bar{\sigma}_2^2}}{\left(k^2 + r^2 + \left(\sin\theta k + \cos\theta r\right)^2\right)^{\frac{3}{2}}}, \quad r_{\beta_2} = \sqrt{2} \frac{\bar{x}_2 t \bar{y}_2 + \bar{y}_2 \bar{\theta}_2 + \bar{z}_2 \bar{\rho}_2}{\bar{x}_2^2 + \bar{y}_2^2 + \bar{z}_2^2}.$$
(22)

Herein, the coefficients are

$$\bar{\eta_2} = \left(-k' + k(k\sin\theta + r\cos\theta)\right)' + k\left(k^2 + r^2 - (k'\sin\theta + r'\cos\theta)\right),$$

$$\bar{\theta_2} = -kk' + (k^2 + r^2)(k\sin\theta + r\cos\theta) - (2kk' + 2rr' + (k''\sin\theta + r''\cos\theta)) - rr',$$

 $\bar{\rho_2} = r(-k' + k(k\sin\theta + r\cos\theta)) + (-r(k\sin\theta + r\cos\theta) + r'),$

$$\bar{x}_2 = (k\sin\theta + r\cos\theta)(r(\sin\theta + r\cos\theta) - r') + r(k^2 + r^2 - (k'\sin\theta + r'\cos\theta)),$$

- $\bar{y}_2 = k(-r(k\sin\theta + r\cos\theta) + r') + r(-k' + k(k\sin\theta + r\cos\theta)),$
- $\bar{z}_2 = k \left(k^2 + r^2 (k' \sin \theta + r' \cos \theta) + (k \sin \theta + r \cos \theta) \left(-k' + k (k \sin \theta + r \cos \theta) \right) \right)$

Proof. If equations (6) and (7) into equation (19) and (20) are written, the proof is completed. \Box

Definition 3.11. Let (α, α^*) be a quaternionic Bertrand pair curves in \mathbf{Q}_H . If Frenet frame of α^* curve is shown with $\{t^*, n_1^*, n_2^*\}$,

$$\beta_3(s) = \frac{(t^* + n_2^*)}{\sqrt{2}} \tag{23}$$

regular curve drawn by vectors t^* and n_2^* is called spatial quaternionic Smarandache curve β_3 .

Theorem 3.12. Frenet vectors of Smarandache curve β_3 are given as follows:

$$t_{\beta_3}(s) = n_1^*, \quad n_{1\beta_3}(s) = \frac{-k^*t^* + r^*n_2^*}{k^{*2} + r^{*2}}, \quad n_{2\beta_3}(s) = \frac{r^*t^* + k^*n_2^*}{\sqrt{k^{*2} + r^{*2}}}.$$
(24)

Proof. If derivative is taken according to s_{β_3} arc parameter of curve $\beta_3(s)$, $t_{\beta_3}(s)$ and $t'_{\beta_3}(s)$ are given, respectively

$$t_{\beta_{3}(s)} = \frac{(k^{*} - r^{*})n_{1}^{*}}{\sqrt{2k^{*^{2}} + r^{*^{2}}}}, \quad t_{\beta_{3}}'(s) = \frac{\sqrt{2}\left(-k^{*}t^{*} + r^{*}n_{2}^{*}\right)}{k^{*} - r^{*}}.$$

From equation (2), principal vector $n_{1\beta_3}$ and binormal vector $n_{2\beta_3}$ are found as in (24).

Theorem 3.13. Curvature and torsion belonging to Smarandache curve β_3 are, respectively

$$k_{\beta_3} = \frac{\sqrt{2(k^{*2} + r^{*2})}}{k^* - r^*}, \ r_{\beta_3} = \sqrt{2} \frac{x_3 \eta_3 + z_3 \varphi_3}{\eta_3^2 + \varphi_3^2}$$
(25)

where coefficients are

$$\eta_{3} = -3k^{*}k^{*'} + 2k^{*}r^{*'} + k^{*'}r^{*}, \quad \theta_{3} = -k^{*3} + r^{*}k^{*2} - k^{*}r^{*2} + r^{*3} + k^{*''} - r^{*''},$$

$$\varphi_{3} = k^{*}r^{*'} + 2k^{*'}r^{*} - 3r^{*}r^{*'}, \quad x_{3} = r^{*}(k^{*} - r^{*})^{2}, \quad z_{3} = k^{*}(k^{*} - r^{*})^{2}.$$
(26)

Proof. First, second and third derivatives of curve β_3 are, respectively

$$\beta_{3}'' = \frac{(k^{*} - r^{*})n_{1}^{*}}{\sqrt{2}}$$
$$\beta_{3}''' = \frac{(-k^{*2} + k^{*}r^{*})t^{*} + (k^{*'} - r^{*'})n_{1}^{*} + (k^{*}r^{*} - r^{*2})n_{2}^{*}}{\sqrt{2}},$$
$$\beta_{3}'''' = \frac{\eta_{3}t^{*} + \theta_{3}n_{1}^{*} + \rho_{3}n_{2}^{*}}{\sqrt{2}}.$$

From (4) equation, curvatures are found as in (25). \Box

Corollary 3.14. Let (α, α^*) be a spatial quaternionic Bertrand curve pair in \mathbf{Q}_H . The expressions of Frenet vectors of Smarandache curve β_3 in terms of Frenet apparatus of Bertrand partner curve are as follows:

$$t_{\beta_3}(s) = n_1, \quad n_{1\beta_3}(s) = \frac{\bar{\omega}_3 t + \phi_3 n_1 + \bar{\sigma}_3 n_2}{\sqrt{\bar{\omega}_3^2 + \bar{\phi}_3^2 + \bar{\sigma}_3^2}},$$

$$n_{2\beta_3}(s) = \frac{(\bar{\omega}_3 t - \bar{\sigma}_3 n_2)[k(\cos\theta - \sin\theta) - r(\cos\theta - \sin\theta)]}{\sqrt{(k^2 - r^2 - (k^2 - r^2)\sin 2\theta)(\bar{\omega}_3^2 + \bar{\phi}_3^2 + \bar{\sigma}_3^2)}}.$$
(27)

Herein, coefficients are

$$\begin{split} \bar{\omega_3} &= -k \Big(k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta) \Big) \sqrt{k^2 - r^2 - (k^2 - r^2)^2 \sin 2\theta}, \\ \bar{\phi_3} &= \Big(k'(\cos\theta - \sin\theta) - r'(\cos\theta + \sin\theta) \Big) \sqrt{k^2 - r^2 - (k^2 - r^2)^2 \sin 2\theta} \\ &- \Big(k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta) \Big) \Big(\sqrt{k^2 - r^2 - (k^2 - r^2)^2 \sin 2\theta} \Big)^{'} \\ \bar{\sigma_3} &= \Big(k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta) \Big) \sqrt{k^2 - r^2 - (k^2 - r^2)^2 \sin 2\theta}. \end{split}$$

Proof. If expression (6) instead of t^* and n_2^* in curve β_3 is written, we have

$$\beta_3(s) = \frac{1}{\sqrt{2}} \Big((\cos \theta - \sin \theta)t + (\sin \theta + \cos \theta)n_2 \Big).$$

If equations (6) and (7) into equation (21) and (22) are written, the proof is completed. \Box

Corollary 3.15. Let (α, α^*) be a spatial quaternionic Bertrand curve pair in \mathbf{Q}_H . The expressions of curvatures of Smarandache curve β_3 in terms of Frenet apparatus of Bertrand partner curve are as follows:

$$k_{\beta_3} = \sqrt{2} \frac{\sqrt{\bar{\omega_3}^2 + \bar{\phi_3}^2 + \bar{\sigma_3}^2}}{k^2 - r^2 - (k^2 - r^2)\sin 2\theta}, \quad r_{\beta_3} = \sqrt{2} \frac{\bar{x_3}\bar{\eta_3} + \bar{z_3}\bar{\phi_3}}{\bar{\eta_3}^2 + \bar{\phi_3}^2}.$$

Herein, the coefficients are

$$\bar{\eta_3} = -k' \left(k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta) \right) - 2k \left(k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta) \right),$$

$$\bar{\theta_3} = -k^2 \left(k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta) \right) - r^2 \left(k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta) \right)$$

$$+ \left(k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta) \right)^{''},$$

$$\bar{\phi_3} = r' \left(k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta) \right) + 2r \left(k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta) \right)^{'},$$

$$\bar{x_3} = k \left(k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta) \right)^2, \quad \bar{z_3} = r((\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta))^2.$$

Proof. If equations (6) and (7) into equation (25) and (26) are written, the proof is completed. \Box **Definition 3.16.** Let (α, α^*) be a quaternionic Bertrand pair curves in \mathbf{Q}_H . If Frenet frame of α^* curve is shown with $\{t^*, n_1^*, n_2^*\}$,

$$\beta_4(s) = \frac{(t^* + n_1^* + n_2^*)}{\sqrt{2}} \tag{28}$$

regular curve drawn by vectors t^* , n_1^* and n_2^* is called spatial quaternionic Smarandache curve β_4 .

Theorem 3.17. Frenet vectors of Smarandache curve β_4 are given as follows:

$$t_{\beta_4}(s) = \frac{k^* t^* + (k^* - r^*)n_1^* + r^* n_2^*}{\sqrt{2(k^* + r^* - k^* r^*)}}, \quad n_{1\beta_4}(s) = \frac{\omega_4 t^* + \phi_4 n_1^* + \sigma_4 n_2^*}{\sqrt{\omega_4^2 + \phi_4^2 + \sigma_4^2}},$$

$$n_{2\beta_4}(s) = \frac{((k^* - r^*)\sigma_4 - r^*\phi_4)t^* + (r^*\omega_4 + k^*\sigma_4)n_1^*}{\sqrt{(2k^{*2} + 2r^{*2} - 2k^* r^*)(\omega_4^2 + \phi_4^2 + \sigma_4^2)}} - \frac{(k^*\phi_4 + (k^* - r^*)\omega_4)n_2^*}{\sqrt{(2k^{*2} + 2r^{*2} - 2k^* r^*)(\omega_4^2 + \phi_4^2 + \sigma_4^2)}}.$$
(29)

Herein, the coefficients are

$$\begin{split} \omega_4 &= k^{*2}(-2k^{*2} - 4r^{*2} + 4r^*k^* - k^{*2}r^{*'}) + k^*r^*(k^{*'} + 2r^{*2} + 2r^{*'}) - 2k^{*'}r^{*2}, \\ \phi_4 &= k^{*2}(-2k^{*2} - 4r^{*2} + 2k^*r^* - r^{*'}) + r^{*2}(-2r^{*2} + 2k^*r^* + k^{*'}) + k^*r^*(k^{*'} - r^{*'}), \\ \sigma_4 &= 2k^{*2}(k^*r^* - 2r^{*2} + r^{*'}) + r^{*2}(4k^*r^* - 2r^{*2} + k^{*'}) - k^*r^*(r^{*'} + 2k^{*'}). \end{split}$$

Proof. If derivative is taken according to s_{β_4} arc parameter of curve $\beta_4(s)$, $t_{\beta_4}(s)$ and $t'_{\beta_4}(s)$ are given, respectively

$$t_{\beta_4(s)} = \frac{-k^* t^* + (k^* - r^*) n_1^* + r^* n_2^*}{2(\sqrt{k^{*2} + r^{*2} - k^* r^*})^2}$$

$$t_{\beta_4}'(s) = \frac{\sqrt{3} (\omega_4 t^* + \phi_4 n_1^* + \sigma_4 n_2^*)}{4(2k^{*2} + r^{*2})^2}.$$

Herein, the coefficients are as seen in (30). From equation (2), principal vector $n_{1\beta_4}$ and binormal vector $n_{2\beta_4}$ are found as in (29).

Theorem 3.18. Curvature and torsion belonging to Smarandache curve β_4 are, respectively

$$k_{\beta_4} = \frac{\sqrt{3}}{4} \frac{\sqrt{\omega_4^2 + \phi_4^2 + \sigma_4^2}}{(k^{*2} + r^{*2} - k^* r^*)^2}, \quad r_{\beta_4} = \frac{\sqrt{3} \left[\eta_4 x_4 + \theta_4 y_4 + \rho_4 z_4\right]}{x_4^2 + y_4^2 + z_4^2} \tag{30}$$

where coefficients are

$$\eta_{4} = k^{*'}r^{*} - k^{*''} - 3k^{*}k^{*'} + 2k^{*}r^{*'} + k^{*3} + k^{*}r^{*2},$$

$$\theta_{4} = r^{*3} - k^{*3} - 3(k^{*}k^{*'} + r^{*}r^{*'}) - (-k^{*''} + r^{*''}) + k^{*}r^{*}(k^{*} - r^{*}),$$

$$\rho_{4} = r^{*''} - k^{*2}r^{*} - 3r^{*}r^{*'} - r^{*3} + 2r^{*}k^{*'} + k^{*}r^{*'},$$

$$x_{4} = 2k^{*}r^{*}(k^{*} - r^{*}) + k^{*}r^{*'} - r^{*}k^{*'} + 2r^{*3},$$

$$y_{4} = k^{*}r^{*'} - r^{*}k^{*'}, \quad z_{4} = 2k^{*3} + k^{*}r^{*'} - 2k^{*2}r^{*} - k^{*'}r^{*}.$$
(31)

Proof. First, second and third derivatives of curve β_4 are, respectively

$$\begin{split} \beta_{4}{'} &= \frac{-k^{*}t^{*} + (k^{*} - r^{*})n_{1}^{*} + r^{*}n_{2}^{*}}{\sqrt{3}} \\ \beta_{4}^{\prime\prime} &= \frac{(-k^{*'} - k^{*2} + k^{*}r^{*})t^{*} - (k^{*2} - k^{*'} + r^{*'} + r^{*2})n_{1}^{*} + (k^{*}r^{*} - r^{*2} + r^{*'})n_{2}^{*}}{\sqrt{3}}, \\ \beta_{4}^{\prime\prime\prime\prime} &= \frac{\eta_{4}t^{*} + \theta_{4}n_{1}^{*} + \rho_{4}n_{2}^{*}}{\sqrt{2}} \end{split}$$

where the coefficients are as seen in (31). From (4) equation, curvatures are found as in (30). \Box

Corollary 3.19. Let (α, α^*) be a spatial quaternionic Bertrand curve pair in \mathbf{Q}_{H} . The expressions of Frenet vectors of

Smarandache curve β_4 in terms of Frenet apparatus of Bertrand partner curve are as follows:

$$t_{\beta_4}(s) \quad = \quad \frac{1}{\sqrt{2}} \frac{-kt + \left(k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta)\right) + rn_2}{\sqrt{(-2\cos\theta kr - \cos\theta\sin\theta k^2 + \cos\theta\sin\theta r^2 + k^2 + kr + r^2)}},$$

$$n_{1\beta_4}(s) = \frac{\bar{\omega_4}t + \bar{\phi_4}n_1 + \bar{\sigma_4}n_2}{\sqrt{\bar{\omega_4}^2 + \bar{\phi_4}^2 + \bar{\sigma_4}^2}},$$

$$n_{2\beta_4}(s) = \frac{\left((k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta))\bar{\sigma_4} - r\bar{\phi_4}\right)t}{\sqrt{k^2 + r^2 + [k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta)]^2(\bar{\omega_4}^2 + \bar{\phi_4}^2 + \bar{\sigma_4}^2)}}$$
(32)

+
$$\frac{(k\vec{\sigma}_4 + r\vec{\omega}_4)n_1}{\sqrt{k^2 + r^2 + [k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta)]^2(\bar{\omega}_4^2 + \bar{\phi}_4^2 + \bar{\sigma}_4^2)}}$$

$$+\frac{-(k\bar{\phi_4}+(k(\cos\theta-\sin\theta)-r(\cos\theta+\sin\theta))\bar{\omega_4})n_2}{\sqrt{k^2+r^2+[k(\cos\theta-\sin\theta)-r(\cos\theta+\sin\theta)]^2(\bar{\omega_4}^2+\bar{\phi_4}^2+\bar{\sigma_4}^2)}}.$$

Herein, the coefficients are

$$\begin{split} \bar{\omega}_4 &= \left(-k' - k(k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta)) \right) \cdot \left(k^2 + r^2 + (k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta))^2 \right) \\ &+ k \left((k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta))^2 \right)', \end{split}$$

$$\bar{\phi}_4 &= \left(-k^2 - r^2 + (k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta))' \right) \\ &\cdot \left(k^2 + r^2 + (k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta))^2 \right) \\ &- (k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta)) \cdot \left(k^2 + r^2 + (k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta))^2 \right)', \end{aligned}$$

$$\bar{\sigma}_4 &= \left(r(k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta)) + r' \right) \cdot \left(k^2 + r^2 + (k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta))^2 \right) \\ &- r(k^2 + r^2 + (k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta)) + r' \right) \cdot \left(k^2 + r^2 + (k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta))^2 \right)'. \end{split}$$

Proof. If expression (6) instead of t^* , n_1^* and n_2^* in curve β_4 is written, we have

$$\beta_4 = \frac{1}{\sqrt{3}} \Big((\cos \theta - \sin \theta)t + n_1 + (\sin \theta + \cos \theta)n_2 \Big).$$

If equations (6) and (7) into (29) and (30) equations are written, the proof is completed. \Box

Corollary 3.20. Let (α, α^*) be a spatial quaternionic Bertrand curve pair in \mathbf{Q}_H . The expressions of curvatures of Smarandache curve β_4 in terms of Frenet apparatus of Bertrand partner curve are as follows:

$$k_{\beta_{4}} = \frac{\sqrt{3}\sqrt{\bar{\omega_{4}}^{2} + \bar{\phi_{4}}^{2} + \bar{\sigma_{4}}^{2}}}{\left((k(\cos\theta - \sin\theta) - r(\cos\theta + \sin\theta))^{2} + k^{2} + r^{2}\right)^{\frac{3}{2}}},$$

$$r_{\beta_{4}} = \sqrt{2}\frac{\bar{x_{4}}\bar{\eta_{4}} + \bar{y_{4}}\bar{\theta_{4}} + \bar{z_{4}}\bar{\rho_{4}}}{\bar{x_{4}}^{2} + \bar{y_{4}}^{2} + \bar{z_{4}}^{2}}.$$
(33)

Herein, the coefficients are

$$\begin{split} \bar{\eta_4} &= \left(-k' - k(k(\cos\theta - \sin\theta) - r(\cos\theta - \sin\theta))\right)' \\ &-k\left(-k^2 - r^2 + (k(\cos\theta - \sin\theta) - r(\cos\theta - \sin\theta))'\right), \\ \bar{\theta_4} &= k\left(-k' - k(k(\cos\theta - \sin\theta) - r(\cos\theta - \sin\theta))'\right) - r\left((rk - r^2)(\cos\theta - \sin\theta) + r'\right) \\ &+ \left(-k^2 - r^2 + (k(\cos\theta - \sin\theta) - r(\cos\theta - \sin\theta))'\right), \\ \bar{\theta_4} &= r\left(-k^2 - r^2 + (k(\cos\theta - \sin\theta) - r(\cos\theta - \sin\theta))'\right) + \left((rk - r^2)(\cos\theta - \sin\theta) + r'\right)', \\ \bar{x_4} &= \left(k(\cos\theta - \sin\theta) - r(\cos\theta - \sin\theta) - r(\cos\theta - \sin\theta))'\right), \\ \bar{x_4} &= \left(k(\cos\theta - \sin\theta) - r(\cos\theta - \sin\theta) - r(\cos\theta - \sin\theta))'\right), \\ \bar{y_4} &= k\left(r(k(\cos\theta - \sin\theta) - r(\cos\theta - \sin\theta)) + r'\right) + r\left(-k' - (k^2 + kr)(\cos\theta - \sin\theta))\right), \\ \bar{z_4} &= k\left(-k^2 - r^2 + [k(\cos\theta - \sin\theta) - r(\cos\theta - \sin\theta)]'\right), \\ \bar{z_4} &= k\left(-k^2 - r^2 + [k(\cos\theta - \sin\theta) - r(\cos\theta - \sin\theta)]'\right), \\ (k(\cos\theta - \sin\theta) - r(\cos\theta - \sin\theta)) + r' - k(k(\cos\theta - \sin\theta) - r(\cos\theta - \sin\theta))). \end{split}$$

Proof. If equations (6) and (7) into equation (30) and (31) are written, the proof is completed. \Box

Example. Let be spatial quaternionic curve

$$\alpha(s) = \left(\frac{\sqrt{2}}{2}\,\cos\left(\frac{\sqrt{5}}{5}\,s\right) + \frac{\sqrt{2}}{2}\,\sin\left(\frac{\sqrt{5}}{5}\,s\right), -\frac{2\,\sqrt{5}}{5}\,s, \frac{-\sqrt{2}}{2}\,\cos(\frac{\sqrt{5}}{5}\,s) + \frac{\sqrt{2}}{2}\,\sin(\frac{\sqrt{5}}{5}\,s)\right)$$

and if taken as $\lambda = 1$, Bertrand partner belonging to this curve,

$$\alpha^*(s) = \left(0, \, \frac{-2\,\sqrt{5}}{5}\,s, 0\right)$$

In terms of definition, we obtain special Smarandache curves β_1 , β_2 , β_3 and β_4 according to Frenet frame of spatial quaternionic curve, (Figure 1).

$$\begin{aligned} \beta_1(s) &= \left(-\frac{1}{2} \cos\left(\frac{\sqrt{5}}{5}s\right) - \frac{1}{2} \sin\left(\frac{\sqrt{5}}{5}s\right), -\frac{\sqrt{2}}{2}, \frac{1}{2} \cos\left(\frac{\sqrt{5}}{5}s\right) - \frac{1}{2} \sin\left(\frac{\sqrt{5}}{5}s\right) \right), \\ \beta_2(s) &= \left(-\cos\left(\frac{\sqrt{5}}{5}s\right), 0, -\sin\left(\frac{\sqrt{5}}{5}s\right) \right), \\ \beta_3(s) &= \left(\frac{1}{2} \sin\left(\frac{\sqrt{5}}{5}s\right) - \frac{1}{2} \cos\left(\frac{\sqrt{5}}{5}s\right), -\frac{\sqrt{2}}{2}, -\frac{1}{2} \cos\left(\frac{\sqrt{5}}{5}s\right) - \frac{1}{2} \sin\left(\frac{\sqrt{5}}{5}s\right) \right), \\ \beta_4(s) &= \left(-\frac{\sqrt{6}}{3} \cos\left(\frac{\sqrt{5}}{5}s\right), -\frac{\sqrt{3}}{3}, -\frac{\sqrt{6}}{3} \sin\left(\frac{\sqrt{5}}{5}s\right) \right) \end{aligned}$$

Figure 1: Smarandache Curves of Quaternionic Bertrand Curve

4. Conclusion

In this study, We have calculated the Smarandache curves of the Bertrand curve pairs. To put it simply, we derived curves from a curve according to a method. We found the Frenet frames and curvatures of these curves, which we call Smarandache curves. Finally, we found these results depending on the Frenet frames of the Bertrand curve pair. We saw that we could switch between Frenet frames. It is possible to examine whether these obtained curves are included in special curves.

References

 Ali AT. Special Smarandache Curves in the Euclidean Space, International Journal of Mathematical Combinatorics. 2, 2010, 30 – 36.

- [2] Bharathi K, Nagaraj M. Quaternion Valued Function Of A Real Variable Serret-Frenet Formula, Indian Journal of Pure and Applied Mathematics. 18(6), 1987, 507-511.
- [3] Demir S, Öztaş K. Serret-Frenet Formulas With Real Quaternions, Süleyman Demirel University Journal of Natural and Applied Sciences. 9(3), 2005, 1 – 7.
- [4] Erişir T, Güngör MA. Some Characterizations of Quaternionic Rectifying Curves in the Semi-Euclidean Space E⁴₂. Honam Mathematical J. 36(1), 2014, 67 83.
- [5] Hacısalihoğlu HH. The Motion Geometry and Quatenions Theory (in Turkish), Gazi University Publications. 1983.
- [6] Karadağ M, Sivridağ AI. Characterizations For Ouaternionic Trendlines, University of Erciyes. Journal of Institute of Sciences and Technology of Erciyes University, 13, 1997, 23-36.
- [7] Keçilioğlu O, İlarslan K. Quaternionic Bertrand Curves In Euclidean 4-Space. Bulletin of Mathematical Analysis and Applications. 5(3), 2013, 27 – 38.
- [8] Parlatici H. Quaternionic Smarandache Curves. Master Thesis. University of Sakarya, 2013.
- [9] Şenyurt S, Çalışkan AS. An Application According to Spatial Quaternionic Smarandache Curve. Applied Mathematical Sciences. 9(5), 2015, 219 – 228.
- [10] Şenyurt S, Sivas S. An Application of Smarandache Curve. Ordu Univ. J. Sci. Tech. 3(1), 2013, 46 60.
- [11] Şenyurt S, Altun Y, Cevahir C. Smarandache Curves for Spherical Indicatrix of the Bertrand Curves Pair. Boletim da Sociedade Paranaense de Matemática. 38(2), 2020, 27 – 39.
- [12] Şenyurt S, Cevahir C, Altun Y. On Spatial Quaternionic Involute Curve A New View. Adv. Appl. Clifford Algebras. 27(2), 2017, 1815 – 1824.
- [13] Senyurt S, Cevahir C, Altun Y. On the Smarandache Curves of Spatial Quaternionic Involute Curve. Proceedings of the National Academy of Sciences. India Section A: Physical Sciences. 2019. (accepted https://doi.org/10.1007/s40010-019-00640-5).
- [14] Tuna A, Çöken AC. On The Quaternionic Inclined Curves In The Semi-Euclidean Space E⁴₂. Applied Mathematics and Computation. 155(2), 2014, 373 – 389.
- [15] Turgut M, Yılmaz S. Smarandache Curves in Minkowski Spacetime. International Journal of Mathematical Combinatorics. 3, 2008, 51 – 55.
- [16] Tuna A. The Serret-Frenet formulae for Quaternionic Curves In The Semi-Euclidean Spaces. Ph.D. Institute of Sciences, Süleyman Demirel University, 2002.
- [17] Lucas P, Ortega-Yagüe J.A. Bertrand Curves In The Three-dimensional Sphere. Journal of Geometry and Physics. 62(9), 2012, 1903 – 1914.

[18] Tunçer Y, Ünal Y. New Representations Of Bertrand Pairs In Euclidean 3-Space. Applied Mathematics and Computation. 219(4), 2012, 1833 – 1842.