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Abstract. In this paper, we define the Fibonacci-Jacobsthal p-sequence and then we discuss the connection
between of the Fibonacci-Jacobsthal p-sequence with the Jacobsthal and Fibonacci p-sequences. Also, we
provide a new Binet formula and a new combinatorial representation of the Fibonacci-Jacobsthal p-numbers
by the aid of the nth power of the generating matrix of the Fibonacci-Jacobsthal p-sequence. Furthermore,
we derive some properties of the Fibonacci-Jacobsthal p-sequences such as the exponential, permanental,
determinantal representations and the sums by using its generating matrix.

1. Introduction

The well-known Jacobsthal sequence {Jn} is defined by the following recurrence relation:

Jn = Jn−1 + 2Jn−2

for n ≥ 2 in which J0 = 0 and J1 = 1.
There are many important generalizations of the Fibonacci sequence. The Fibonacci p-sequence

{
Fp (n)

}
(see detailed information in [21, 22]) is one of them:

Fp (n) = Fp (n − 1) + Fp
(
n − p − 1

)
for n > p and p = 1, 2, 3, . . ., in which Fp (0) = 0, Fp (1) = · · · Fp

(
p
)
= 1. When p = 1, the Fibonacci p-sequence{

Fp (n)
}

is reduced to the usual Fibonacci sequence {Fn}.
It is easy to see that the characteristic polynomials of Jacobsthal sequence and Fibonacci p-sequence are

11 (x) = x2
− x − 2 and 12 (x) = xp+1

− xp
− 1, respectively. We will use these in the next section.

Let the (n + k)th term of a sequence be defined recursively by a linear combination of the preceding k
terms:

an+k = c0an + c1an+1 + · · · + ck−1an+k−1

in which c0, c1, . . . , ck−1 are real constants. In [12], Kalman derived a number of closed-form formulas for
the generalized sequence by the companion matrix method as follows:
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https://orcid.org/0000-0001-5870-5298

Received: 17 September 2020; Accepted: 28 October 2020; Published: 31 October 2020
Keywords. (Jacobsthal sequence; Fibonacci p-sequence; Matrix; Representation.)
2010 Mathematics Subject Classification. 11K31, 11C20, 15A15
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Let the matrix A be defined by

A =
[
ai, j

]
k×k
=



0 1 0 · · · 0 0
0 0 1 · · · 0 0

0 0 0
. . . 0 0

...
...

...
...

...
0 0 0 · · · 0 1
c0 c1 c2 ck−2 ck−1


,

then

An


a0
a1
...

ak−1

 =


an
an+1
...

an+k−1


for n ≥ 0.

Several authors have used homogeneous linear recurrence relations to deduce miscellaneous properties
for a plethora of sequences: see for example, [1, 4, 8–11, 19, 20]. In [5–7, 14–16, 21–23], the authors defined
some linear recurrence sequences and gave their various properties by matrix methods. In this paper,
we discuss connections between the Jacobsthal numbers and Fibonacci p-numbers. Firstly, we define the
Fibonacci-Jacobsthal p-sequence and then we study recurrence relation among this sequence, Jacobsthal
sequence and Fibonacci p-sequence. Also, we give the relations between the generating matrix of the
Fibonacci-Jacobsthal p-numbers and the elements of Jacobsthal sequence and Fibonacci p-sequence. Fur-
thermore, using the generating matrix the Fibonacci-Jacobsthal p-sequence, we obtain some new structural
properties of the Fibonacci p-numbers such as the Binet formula and combinatorial representations. Finally,
we derive the exponential, permanental, and determinantal representations and the sums of Fibonacci-
Jacobsthal p-sequences.

2. On The Connections Between Jacobsthal Numbers and Fibonacci p-Numbers

Now we define the Fibonacci-Jacobsthal p-sequence
{
FJ,p

n

}
by the following homogeneous linear recur-

rence relation for any given p (3, 4, 5, . . .) and n ≥ 0

FJ,p
n+p+3 = 2FJ,p

n+p+2 + FJ,p
n+p+1 − 2FJ,p

n+p + FJ,p
n+2 − FJ,p

n+1 − 2FJ,p
n (1)

in which FJ,p
0 = · · · = FJ,p

p+1 = 0 and FJ,p
p+2 = 1.

First, we consider the relationship between the Fibonacci-Jacobsthal p-sequence which is defined above,
Jacobsthal sequence, and Fibonacci p-sequences.

Theorem 2.1. Let Jn, Fp (n) and FJ,p
n be the nth Jacobsthal number, Fibonacci p-number, and Fibonacci-Jacobsthal

p-numbers, respectively. Then,
Jn + Fp (n + 1) = FJ,p

n+p+2 − 3FJ,p
n+p − FJ,p

n

for n ≥ 0 and p ≥ 3.

Proof. The assertion may be proved by induction on n. It is clear that J0 + Fp (1) = FJ,p
p+2 − 3FJ,p

p − FJ,p
0 = 0.

Suppose that the equation holds for n ≥ 1. Then we must show that the equation holds for n + 1. Since the
characteristic polynomial of Fibonacci-Jacobsthal p-sequence

{
FJ,p

n

}
, is

h (x) = xp+3
− 2xp+2

− xp+1 + xp
− x2 + x + 2
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and

h (x) = 11 (x) 12 (x) ,

where 11 (x) and 12 (x) are the characteristic polynomials of Jacobsthal sequence and Fibonacci p-sequence,
respectively, we obtain the following relations:

Jn+p+3 = 2Jn+p+2 + Jn+p+1 − 2Jn+p + Jn+2 − Jn+1 − 2Jn

and

Fp
(
n + p + 3

)
= 2Fp

(
n + p + 2

)
+ Fp

(
n + p + 1

)
− 2Fp

(
n + p

)
+ Fp (n + 2) − Fp (n + 1) − 2Fp (n)

for n ≥ 1. Thus, by a simple calculation, we have the conclusion.

Theorem 2.2. Let Jn and FJ,p
n be the nth Jacobsthal number and Fibonacci-Jacobsthal p-numbers. Then,

i.

Jn = FJ,p
n+p+1 − FJ,p

n+p − FJ,p
n ,

ii.

Jn + Jn+1 = FJ,p
n+p+2 − FJ,p

n+p − FJ,p
n+1 − FJ,p

n

for n ≥ 0 and p ≥ 3.

Proof. Consider the case ii. The assertion may be proved by induction on n. It is clear that J0 + J1 =

FJ,p
5 −FJ,p

3 −FJ,p
1 −FJ,p

0 = 1. Now we assume that the equation holds for n > 0. Then we show that the equation
holds for n + 1. Since the characteristic polynomial of Jacobsthal sequence {Jn}, is

11 (x) = x2
− x − 2

we obtain the following relations:

Jn+p+3 = 2Jn+p+2 + Jn+p+1 − 2Jn+p + Jn+2 − Jn+1 − 2Jn

for n ≥ 1. Thus, by a simple calculation, we have the conclusion.
There is a similar proof for i.

By the recurrence relation (1), we have



FJ,p
n+p+2

FJ,p
n+p+1

FJ,p
n+p
...

FJ,p
n





2 1 −2 0 · · · 0 0 1 −1 −2
1 0 0 0 · · · 0 0 0 0 0
0 1 0 0 · · · 0 0 0 0 0
0 0 1 0 · · · 0 0 0 0 0
0 0 0 1 · · · 0 0 0 0 0
...

. . .
. . .

. . .
. . .

...
...

...
...

0 0 0 0 · · · 1 0 0 0 0
0 0 0 0 · · · 0 1 0 0 0
0 0 0 0 · · · 0 0 1 0 0
0 0 0 0 · · · 0 0 0 1 0



=



FJ,p
n+p+3

FJ,p
n+p+2

FJ,p
n+p+1
...

FJ,p
n+1





Ö. Erdağ, Ö. Deveci / TJOS 5 (2), 147–156 150

for the Fibonacci-Jacobsthal p-sequence
{
FJ,p

n

}
. Letting

Mp =



2 1 −2 0 · · · 0 0 1 −1 −2
1 0 0 0 · · · 0 0 0 0 0
0 1 0 0 · · · 0 0 0 0 0
0 0 1 0 · · · 0 0 0 0 0
0 0 0 1 · · · 0 0 0 0 0
. . .

. . .
. . .

. . .
. . .

...
...

...
...

0 0 0 0 · · · 1 0 0 0 0
0 0 0 0 · · · 0 1 0 0 0
0 0 0 0 · · · 0 0 1 0 0
0 0 0 0 · · · 0 0 0 1 0


(p+3)×(p+3).

The companion matrix Mp =
[
mi, j

]
(p+3)×(p+3) is said to be the Fibonacci-Jacobsthal p-matrix. For detailed

information about the companion matrices, see [17, 18]. It can be readily established by mathematical
induction that for p ≥ 3 and α ≥ 2p

(
Mp

)α
=



FJ,p
α+p+2 FJ,p

α+p+3 − 2FJ,p
α+p+2 Fp

(
α − p + 2

)
− 2FJ,p

α+p+1 Fp
(
α − p + 3

)
· · ·

FJ,p
α+p+1 FJ,p

α+p+2 − 2FJ,p
α+p+1 Fp

(
α − p + 1

)
− 2FJ,p

α+p Fp
(
α − p + 2

)
· · ·

FJ,p
α+p FJ,p

α+p+1 − 2FJ,p
α+p Fp

(
α − p

)
− 2FJ,p

α+p−1 Fp
(
α − p + 1

)
· · · M∗p

...
...

...
...

FJ,p
α+1 FJ,p

α+2 − 2FJ,p
α+1 Fp

(
α − 2p + 1

)
− 2FJ,p

α Fp
(
α − 2p + 2

)
· · ·

FJ,p
α FJ,p

α+1 − 2FJ,p
α Fp

(
α − 2p

)
− 2FJ,p

α−1 Fp
(
α − 2p + 1

)
· · ·


,

where

M∗p =



Fp (α) Fp (α + 1) − FJ,p
α+p+2 −2FJ,p

α+p+1

Fp (α − 1) Fp (α) − FJ,p
α+p+1 −2FJ,p

α+p

Fp (α − 2) Fp (α − 1) − FJ,p
α+p −2FJ,p

α+p−1

.

.

.
.
.
.

.

.

.

Fp
(
α − p − 1

)
Fp

(
α − p

)
− FJ,p

α+1 −2FJ,p
α

Fp
(
α − p − 2

)
Fp

(
α − p − 1

)
− FJ,p

α −2FJ,p
α−1


.

We easily derive that det Mp = (−1)p+1
·2. In [21], Stakhov defined the generalized Fibonacci p-matrix Qp

and derived the nth power of the matrix Qp. In [13], Kılıc gave a Binet formula for the Fibonacci p-numbers
by matrix method. Now we concentrate on finding another Binet formula for the Fibonacci-Jacobsthal
p-numbers by the aid of the matrix

(
Mp

)α
.

Lemma 2.3. The characteristic equation of all the Fibonacci-Jacobsthal p-numbers xp+3
−2xp+2

−xp+1+xp
−x2+x+2 =

0 does not have multiple roots for p ≥ 3.

Proof. It is clear that xp+3
− 2xp+2

− xp+1 + xp
− x2 + x + 2 =

(
xp+1
− xp
− 1

) (
x2
− x − 2

)
. In [13], it was shown

that the equation xp+1
− xp

− 1 = 0 does not have multiple roots for p > 1. It is easy to see that the roots of
the equation x2

− x − 2 = 0 are 2 and −1. Since (2)p+1
− (2)p

− 1 , 0 and (−1)p+1
− (−1)p

− 1 , 0 for p > 1, the
equation xp+3

− 2xp+2
− xp+1 + xp

− x2 + x + 2 = 0 does not have multiple roots for p ≥ 3.

Let h (x) be the characteristic polynomial of matrix Mp. Then we have h (x) = xp+3
−2xp+2

−xp+1+xp
−x2+

x + 2, which is a well-known fact from the companion matrices. If λ1, λ2, . . . , λp+3 are roots of the equation
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xp+3
− 2xp+2

− xp+1 + xp
− x2 + x + 2 = 0, then by Lemma 2.3, it is known that λ1, λ2, . . . , λp+3 are distinct.

Define the
(
p + 3

)
×

(
p + 3

)
Vandermonde matrix Vp as follows:

Vp =



(λ1)p+2 (λ2)p+2 . . .
(
λp+3

)p+2

(λ1)p+1 (λ2)p+1 . . .
(
λp+3

)p+1

...
...

...
λ1 λ2 . . . λp+3
1 1 . . . 1


.

Assume that Vp
(
i, j

)
is a

(
p + 3

)
×

(
p + 3

)
matrix derived from the Vandermonde matrix Vp by replacing the

jth column of Vp by Wp (i), where, Wp (i) is a
(
p + 3

)
× 1 matrix as follows:

Wp (i) =


(λ1)α+p+3−i

(λ2)α+p+3−i

...(
λp+3

)α+p+3−i


.

Theorem 2.4. Let p be a positive integer such that p ≥ 3 and let
(
Mp

)α
= m(p,α)

i, j for α ≥ 1, then

m(p,α)
i, j =

det Vp
(
i, j

)
det Vp

.

Proof. Since the equation xp+3
− 2xp+2

− xp+1 + xp
− x2 + x + 2 = 0 does not have multiple roots for p ≥ 3, the

eigenvalues of the Fibonacci-Jacobsthal p-matrix Mp are distinct. Then, it is clear that Mp is diagonalizable.
Let Dp = dia1

(
λ1, λ2, . . . , λp+3

)
, then we may write MpVp = VpDp. Since the matrix Vp is invertible, we

obtain the equation
(
Vp

)−1
MpVp = Dp. Therefore, Mp is similar to Dp; hence,

(
Mp

)α
Vp = Vp

(
Dp

)α
for α ≥ 1.

So we have the following linear system of equations:

m(p,α)
i,1 (λ1)p+2 +m(p,α)

i,2 (λ1)p+1 + · · · +m(p,α)
i,p+3 = (λ1)α+p+3−i

m(p,α)
i,1 (λ2)p+2 +m(p,α)

i,2 (λ2)p+1 + · · · +m(p,α)
i,p+3 = (λ2)α+p+3−i

...

m(p,α)
i,1

(
λp+3

)p+2
+m(p,α)

i,2

(
λp+3

)p+1
+ · · · +m(p,α)

i,p+3 =
(
λp+3

)α+p+3−i
.

Then we conclude that

m(p,α)
i, j =

det Vp
(
i, j

)
det Vp

for each i, j = 1, 2, . . . , p + 3.

Thus by Theorem 2.4 and the matrix
(
Mp

)α
, we have the following useful result for the Fibonacci-

Jacobsthal p-numbers.

Corollary 2.5. Let p be a positive integer such that p ≥ 3 and let FJ,p
n be the nth element of Fibonacci-Jacobsthal

p-sequence, then

FJ,p
n =

det Vp
(
p + 3, 1

)
det Vp
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and

FJ,p
n = −

det Vp
(
p + 2, p + 3

)
2 · det Vp

for n ≥ 1.

It is easy to see that the generating function of Fibonacci-Jacobsthal p-sequence
{
FJ,p

n

}
is as follows:

1 (x) =
xp+2

1 − 2x − x2 + 2x3 − xp+1 + xp+2 + 2xp+3 ,

where p ≥ 3.
Then we can give an exponential representation for the Fibonacci-Jacobsthal p-numbers by the aid of

the generating function with the following Theorem.

Theorem 2.6. The Fibonacci-Jacobsthal p-sequence
{
FJ,p

n

}
have the following exponential representation:

1 (x) = xp+2 exp

 ∞∑
i=1

(x)i

i

(
2 + x − 2x2 + xp

− xp+1
− 2xp+2

)i
 ,

where p ≥ 3.

Proof. Since
ln 1 (x) = ln xp+2

− ln
(
1 − 2x − x2 + 2x3

− xp+1 + xp+2 + 2xp+3
)

and

− ln
(
1 − 2x − x2 + 2x3

− xp+1 + xp+2 + 2xp+3
)
= −[−x

(
2 + x − 2x2 + xp

− xp+1
− 2xp+2

)
−

1
2

x2
(
2 + x − 2x2 + xp

− xp+1
− 2xp+2

)2
− · · ·

−
1
i

xi
(
2 + x − 2x2 + xp

− xp+1
− 2xp+2

)i
− · · · ]

it is clear that

1 (x) = xp+2 exp

 ∞∑
i=1

(x)i

i

(
2 + x − 2x2 + xp

− xp+1
− 2xp+2

)i


by a simple calculation, we obtain the conclusion.

Let K (k1, k2, . . . , kv) be a v × v companion matrix as follows:

K (k1, k2, . . . , kv) =


k1 k2 · · · kv
1 0 0
...

. . .
...

0 · · · 1 0


.

Theorem 2.7. (Chen and Louck [3]) The
(
i, j

)
entry k(n)

i, j (k1, k2, . . . , kv) in the matrix Kn (k1, k2, . . . , kv) is given by
the following formula:

k(n)
i, j (k1, k2, . . . , kv) =

∑
(t1,t2,...,tv)

t j + t j+1 + · · · + tv

t1 + t2 + · · · + tv
×

(
t1 + · · · + tv

t1, . . . , tv

)
kt1

1 · · · k
tv
v (2)

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + vtv = n − i + j,
(t1+···+tv

t1,...,tv

)
=

(t1+···+tv)!
t1!···tv! is a

multinomial coefficient, and the coefficients in (2) are defined to be 1 if n = i − j.
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Then we can give other combinatorial representations than for the Fibonacci-Jacobsthal p-numbers by
the following Corollary.

Corollary 2.8. Let FJ,p
n be the nth Fibonacci-Jacobsthal p-number for n ≥ 1. Then

i.

FJ,p
n =

∑
(t1,t2,...,tp+3)

(
t1 + t2 + · · · + tp+3

t1, t2, · · · , tp+3

)
2t1 (−1)tp+2 (−2)t3+tp+3

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · +
(
p + 3

)
tp+3 = n − p − 2.

ii.

FJ,p
n = −

∑
(t1,t2,...,tp+3)

tp+3

t1 + t2 + · · · + tp+3
×

(
t1 + t2 + · · · + tp+3

t1, t2, · · · , tp+3

)
2t1 (−1)tp+2 (−2)t3+tp+3

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · +
(
p + 3

)
tp+3 = n + 1.

Proof. If we take i = p+ 3, j = 1 for the case i. and i = p+ 2, j = p+ 3 for the case ii. in Theorem 2.7, then we
can directly see the conclusions from

(
Mp

)α
.

Now we consider the relationship between the Fibonacci-Jacobsthal p-numbers and the permanent of a
certain matrix which is obtained using the Fibonacci-Jacobsthal p-matrix

(
Mp

)α
.

Definition 2.9. A u × v real matrix M =
[
mi, j

]
is called a contractible matrix in the kth column (resp. row.) if the

kth column (resp. row.) contains exactly two non-zero entries.

Suppose that x1, x2, . . .,xu are row vectors of the matrix M. If M is contractible in the kth column such
that mi,k , 0,m j,k , 0 and i , j, then the (u − 1) × (v − 1) matrix Mi j:k obtained from M by replacing the ith

row with mi,kx j +m j,kxi and deleting the jth row. The kth column is called the contraction in the kth column
relative to the ith row and the jth row.

In [2], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order α > 1 and N is a
contraction of M.

Now we concentrate on finding relationships among the Fibonacci-Jacobsthal p-numbers and the per-
manents of certain matrices which are obtained by using the generating matrix of Fibonacci-Jacobsthal

p-numbers. Let KF,J
m,p =

[
k(p)

i, j

]
be the m ×m super-diagonal matrix, defined by

k(p)
i, j =



2 if i = τ and j = τ for 1 ≤ τ ≤ m,

1

if i = τ and j = τ + 1 for 1 ≤ τ ≤ m − 1,
i = τ and j = τ + p for 1 ≤ τ ≤ m − p

and
i = τ + 1 and j = τ for 1 ≤ τ ≤ m − 1,

−1 if i = τ and j = τ + p + 1 for 1 ≤ τ ≤ m − p − 1,

−2
if i = τ and j = τ + 2 for 1 ≤ τ ≤ m − 2

and
i = τ and j = τ + p + 2 for 1 ≤ τ ≤ m − p − 2,

0 otherwise.

, for m ≥ p + 3.

Then we have the following Theorem.

Theorem 2.10. For m ≥ p + 3,
perKF,J

m,p = FJ,p
m+p+2.
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Proof. Let us consider matrix KF,J
m,p and let the equation be hold for m ≥ p + 3. Then we show that the

equation holds for m + 1. If we expand the perKF,J
m,p by the Laplace expansion of permanent with respect to

the first row, then we obtain

perKF,J
m+1,p = 2perKF,J

m,p + perKF,J
m−1,p − 2perKF,J

m−2,p + perKF,J
m−p,p − perKF,J

m−p−1,p − 2perKF,J
m−p−2,p.

Since
perKF,J

m,p = FJ,p
m+p+2,

perKF,J
m−1,p = FJ,p

m+p+1,

perKF,J
m−2,p = FJ,p

m+p,

perKF,J
m−p,p = FJ,p

m+2,

perKF,J
m−p−1,p = FJ,p

m+1

and
perKF,J

m−p−2,p = FJ,p
m ,

we easily obtain that perKF,J
m+1,p = FJ,p

m+p+3. So the proof is complete.

Let LF,J
m,p =

[
l(

p)
i, j

]
be the m ×m matrix, defined by

l(
p)

i, j =



2 if i = τ and j = τ for 1 ≤ τ ≤ m − 3,

1

if i = τ and j = τ for m − 2 ≤ τ ≤ m,
i = τ and j = τ + 1 for 1 ≤ τ ≤ m − 1,

i = τ and j = τ + p for 1 ≤ τ ≤ m − p − 2
and

i = τ + 1 and j = τ for 1 ≤ τ ≤ m − 4,
−1 if i = τ and j = τ + p + 1 for 1 ≤ τ ≤ m − p − 1,

−2
if i = τ and j = τ + 2 for 1 ≤ τ ≤ m − 3

and
i = τ and j = τ + p + 2 for 1 ≤ τ ≤ m − p − 2,

0 otherwise.

, for m ≥ p + 3.

Then we have the following Theorem.

Theorem 2.11. For m ≥ p + 3,
perLF,J

m,p = FJ,p
m+p−1.

Proof. Let us consider matrix LF,J
m,p and let the equation be hold for m ≥ p+3. Then we show that the equation

holds for m + 1. If we expand the perLF,J
m,p by the Laplace expansion of permanent with respect to the first

row, then we obtain

perLF,J
m+1,p = 2perLF,J

m,p + perLF,J
m−1,p − 2perLF,J

m−2,p + perLF,J
m−p,p − perLF,J

m−p−1,p − 2perLF,J
m−p−2,p.

Since
perLF,J

m,p = FJ,p
m+p−1,

perLF,J
m−1,p = FJ,p

m+p−2,
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perLF,J
m−2,p = FJ,p

m+p−3,

perLF,J
m−p,p = FJ,p

m−1,

perLF,J
m−p−1,p = FJ,p

m−2

and
perLF,J

m−p−2,p = FJ,p
m−3,

we easily obtain that perLF,J
m+1,p = FJ,p

m+p. So the proof is complete.

Assume that NF,J
m,p =

[
n(p)

i, j

]
be the m ×m matrix, defined by

NF,J
m,p =



(m − 3) th
↓

1 · · · 1 0 0 0
1
0
... LF,J

m−1,p
0
0


, for m > p + 3,

then we have the following results:

Theorem 2.12. For m > p + 3,

perNF,J
m,p =

m+p−2∑
i=0

FJ,p
i .

Proof. If we extend per NF,J
m,p with respect to the first row, we write

perNF,J
m,p = perNF,J

m−1,p + perLF,J
m−1,p.

Thus, by the results and an inductive argument, the proof is easily seen.

A matrix M is called convertible if there is an n× n (1,−1)-matrix K such that perM = det (M ◦ K), where
M ◦ K denotes the Hadamard product of M and K.

Now we give relationships among the Fibonacci-Jacobsthal p-numbers and the determinants of certain
matrices which are obtained by using the matrix KF,J

m,p, LF,J
m,p and NF,J

m,p. Let m > p + 3 and let H be the m × m
matrix, defined by

H =



1 1 1 · · · 1 1
−1 1 1 · · · 1 1
1 −1 1 · · · 1 1
...

. . .
. . .

. . .
. . .

...
1 · · · 1 −1 1 1
1 · · · 1 1 −1 1


.

Corollary 2.13. For m > p + 3,
det

(
KF,J

m,p ◦H
)
= FJ,p

m+p+2,

det
(
LF,J

m,p ◦H
)
= FJ,p

m+p−1,

and

det
(
NF,J

m,p ◦H
)
=

m+p−2∑
i=0

FJ,p
i .
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Proof. Since perKF,J
m,p = det

(
KF,J

m,p ◦H
)
, perLF,J

m,p = det
(
LF,J

m,p ◦H
)

and perNF,J
m,p = det

(
NF,J

m,p ◦H
)

for m > p + 3, by
Theorem 2.10, Theorem 2.11 and Theorem 2.12, we have the conclusion.

Now we consider the sums of the Fibonacci-Jacobsthal p-numbers. Let

Sα =
α∑

u=0

FJ,p
u

for α > 1 and p ≥ 3, and let TF,J
p and

(
TF,J

p

)α
be the

(
p + 4

)
×

(
p + 4

)
matrix such that

TF,J
p =



1 0 0 · · · 0 0
1
0
... Mp
0
0


.

If we use induction on α, then we obtain

(
TF,J

p

)α
=



1 0 0 · · · 0 0
Sα+p+1
Sα+p
...

(
Mp

)α
Sα

Sα−1


.
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