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Abstract. Modeling everyday life processes play a great role in human existence. Thus, distribution theory
has helped to understand how our everyday life processes are distributed. However, this depends on how
researchers in distribution theory compound several distributions to derive a more flexible distribution.
This study proposes the alpha power Weibull Frechet distribution for real-life datasets. However, some
statistical structural properties of the model such as kurtosis, hazard rate and odd functions, cumulative,
quantiles, reversed hazard, skewness, order statistics and survival function were derived. The parameters
of the proposed model were obtained using the maximum likelihood method. The behavioural nature
of the model was studied through simulation. Finally, a two real life data was used to investigate the
performance of the proposed model. The results show that the new model performs better than some
existing continuous models in statistical literature.

1. Introduction

Integral representations of solutions for differential equations and operators are used in many scientific
fields [1, 2]. Several methods for generating family of univariate distributions were based on differential
equation (Pearson 1895). Of most important, is the translation method proposed in [3] . This method is
based on quantile function that was developed in [4]. Lifetime processes have received several attentions
through modeling the way and manner in which they are distributed, thus developing a flexible distribution
depending on how the researcher compounds one or more distribution(s) to form a better or a comparable
distribution [5]. The Weibull distribution plays a very important role in modeling lifetime processes. The
Weibull distribution was proposed by a famous statistician called Weibull [6]. This Weibull

distribution has a wide range of applications in modelling lifetime processes, failure time processes,
survival time, mechanical and electrical systems and machine learning. More so, the Frechet distribution is
used in modeling extreme value theory. Its applications ranging from horse racing accelerated life testing in
earthquakes, floods, rainfall, queues in supermarkets, wind speed and sea waves. The Frechet distribution
can also be used in modelling material properties in engineering materials.
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Let S be a random variable, say s > 0. Then, the Frechet distribution is defined as

1(s, α, β) = βαβs−beta−1exp
[
−(
α
s

)β
]
α, β > 0. (1)

The corresponding cdf is expressed as

G(s, α, β) = exp
[
−(
α
s

)β
]
α, β > 0, (2)

where α and β are the scale and shape parameters respectively.
More so, the Weibull pdf with the parameters α > 0 and β > 0 is defined as

f (s, λ, β) = λγsγ−1exp(−γsγ−1); λ γ > 0. (3)

The cdf that corresponds to the Weibull pdf is given as

F(s, λ, β) = 1 − exp(−γsγ); λ γ > 0 (4)

where λ and γ are the shaped and scale parameters respectively.
[7] Proposed the Weibull Frechet (WFr) distribution and obtained the its pdf as

f (s) = ψbβτβs−β−1exp
[
−b(

τ
s

)β
]{

1 − exp
[
−(
τ
s

)β
]}−b−1

exp
[
−ψ

[
exp

[
(
τ
s

)β
]
− 1

]−b]
(5)

The corresponds cdf is expressed as

F(s) = 1 − exp
[
−ψ

[
exp

[
(
τ
s

)β
]
− 1

]−b]
, (6)

whereτ is the scale parameter,β, ψ and b are the shape parameters.
The alpha power transformation (AP) was proposed in [8]. The pdf of the alpha power transformed

family of distribution is given as

fAP(s) =


1(s) logα

(α−1)α
G(s), if α ∈ (<+

− (1))

1(s), otherwiseα = 1.

(7)

The corresponding cdf is defined as

FAP(s) =
αG(s)

− 1
α − 1

α ∈ (<+
− (1)) . (8)

Otherwise, F(s), for α = 1 where 1(s) is the baseline pdf and G(s) is the baseline cdf.
Several research works have been done in literature researched. [9] Proposed the Weibull-G family

of distribution. The alpha power inverted exponential distribution was proposed in [10]. Gompertz-G
distribution was proposed in [11]. Gompertz alpha power inverted exponential distribution was proposed
in [12]. The extended new generalized exponential distribution was proposed in [13]. The Weibull alpha
power inverted exponential distribution was proposed in [14]. Alpha power Weibull distribution was
proposed in [15].

However, many distributions have been proposed in literature to extend distributions that are significant
to the progress of distribution frontiers and to make life more meaningful. Thus, this study set up a model
called alpha power Weibull Frechet (APWF) distribution to push back the frontiers of knowledge in data
science, data analysis and distribution theory.
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Figure 1: The APWF density for different parameter values cases

This study was motivated by studies and events obtained from some literature research in probability
and distribution theories. However, the APWF model was proposed to push back the frontiers of knowledge
in data science, data analysis and distribution theory by addition of a parameter to improve the existing
models using the AP characterization.

The aim of this study was to introduce a class of Frechet distribution in distribution theory together
with its mathematical properties. It worthy to note that this study was proposed to address APWF model,
since, say , we obtained the usual WFr model.

2. The APWF Distribution

This section proposed a class of the Frechet family of distribution called APWF model. Let s1, s2, s3, · · · sn
be a random sample of the APWF distribution. Then, the pdf of the APWF is given as

fAPWF(s) =ψbβτβs−β−1exp
[
−b(

τ
s

)β
]{

1 − exp
[
−(
τ
s

)β
]}−b−1

exp
[
−ψ

[
exp

[
(
τ
s

)β
]
− 1

]−b]

×
logα

(α − 1)
α

[
1−exp

[
−ψ

[
exp

[
( τs )β

]
−1

]−b]]
, α ∈ (<+

− (1)).

(9)

Figure 1 shows the plot of the pdf for different parameter values cases. In Figure 1, the shape of the pdf
could be increasing, decreasing, unimodal and symmetrical depending on the parameter values.

The cdf that corresponds to Equation (9) is given as

FAPWF(s) =
{
α

[
1−exp

[
−ψ

[
exp

[
( τs )β

]
−1

]−b]]
− 1

}
(α − 1)−1, α ∈ (<+

− (1)). (10)
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3. Mathematical Mixture Representation

In this section, we expressed the APWF distribution in power series. First and foremost, we expressed
the Weibull Frechet distribution before the proposed distribution is addressed. Thus, the Equation (5) can
be defined as

f (s) = ψbβτβs−(β+1)exp
[
−b(

τ
s

)β
]
exp

[
−ψ

[ exp
[
−( τs )β

]
1 − exp

[
−( τs )β

] ]b]{
1 − exp

[
−(
τ
s

)β
]}−(b+1)

(11)

Let the middle quantity in Equation (11) be A. Then, expanding the exponential function in A, we
expressed

A =

∞∑
k=0

(−1)kαk

k!

exp
[
−bk( τs )β

]
[
1 − exp

[
−b( τs )β

]]kb
. (12)

Inserting the Equation (12) into Equation (11), we have

f (s) = bβτβs−(β+1)
∞∑
ξ=0

(−1)ξαξ+1

ξ!
exp

[
−(ξ + 1)b(

τ
s

)β
][

1 − exp
[
−(
τ
s

)β
]]−(ξb+b+1)

(13)

Further expansion of the last quantity in power series gives

f (s) = bβτβs−(β+1)
∞∑
j=0

∞∑
ξ=0

(−1)ξΨξ+1
[
(ξ + 1)b + 1

] j

j!ξ!
exp

[
−[(ξ + 1)b + j](

τ
s

)β
]
, (14)

where Ψ j =
Γ(Ψ+ j)
Γ(Ψ) is the rising factional for any real Ψ.

However, the Equation (14) can be expressed as

f (s) = β[(ξ + 1)b + j]τβ
∞∑
j=0

∞∑
ξ=0

υ j,ξs−(β+1)exp
[
−[(ξ + 1)b + j](

τ
s

)β
]
, (15)

where

υ j,ξ =

(−1)ξΨξ+1
[
(ξ + 1)b + 1

] j

j!ξ![(ξ + 1)b + j]
. (16)

Thus the Equation (11) reduces to

f (s) =

∞∑
j=0

∞∑
ξ=0

υ j,ξh(ξ+1)b+ j(s), (17)

where is the scale parameter α[(ξ + 1)b + j]
1
β of the Frechet distribution h(ξ+1)b+ j(s) and shape parameter β .

Integrating Equation (17), the cdf of can be expressed as

F(s) =

∞∑
j=0

∞∑
ξ=0

υ j,ξH(ξ+1)b+ j(s), (18)
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where

h(s) = ψbβτβs−(β+1)exp
[
−b(

τ
s

)β
]{

1 − exp
[
−(
τ
s

)β
]}−(b+1)

(19)

and

H(s) = Ψ
{
exp

[
(
τ
s

)β
]
− 1

}−b

. (20)

Also, αG(s) can be written as

αG(s) =

∞∑
i=0

(logα)iG(s)i

i
, (21)

where G(s) is the baseline pdf. Hence, F(s)i in Equation (18) can be expressed as

F(s)i =

∞∑
j=0

∞∑
ξ=0

υi
j,ξH

i
(ξ+1)b+ j(s). (22)

Hence, Equation (21) becomes

αG(s) =

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

(logα)i

i
υi

j,ξH
i
(ξ+1)b+ j(s). (23)

However, the pdf of the APWF distribution is given in mixture representation as

fAPWF(s) =
logα

(α − 1)
1(s)αG(s) =

1
α − 1

∞∑
i=0

∞∑
j=0

∞∑
ξ=0

(logα)i+1

i
υi+1

j,ξ h(ξ+1)b+ jHi
(ξ+1)b+ j(s) (24)

The corresponding cdf is defined as

FAPWF(s) =
1

α − 1

( ∞∑
i=0

∞∑
j=0

∞∑
ξ=0

(logα)i+1

i
υi

j,ξH
i
(ξ+1)b+ j(s) − 1

)
(25)

where H(ξ+1)b+ j(s) is the Frechet cdf with scale parameter α[(ξ + 1)b + j]
1
β and shape parameter β .

4. Mathematical Properties

This section investigates the properties of the APWF density. The structural properties of the APWF
density was computed efficiently by using programming software like R, Maple, Matlab and Mathematical.

4.1. The Quantile and Random Number Generation of the APWF Distribution

Let S be a random variable such that S ∼ APWF(ψ, b, β, τ, α). Then, the quantile function of the variable
S for µ ∈ (0.1) is given as

sµ = τ
[
log

[[
−ψ−1 log

[
1 −

(
logα

)−1

log
[
µ
(
α − 1

)
+ 1

]]] 1
b

+ 1
] 1
β
]
. (26)

By setting µ = 0.5 in Equation (26), we obtain the median of the random variable S is obtained as

s0.5 = τ
[
log

[[
−ψ−1 log

[
1 −

(
logα

)−1

log
[
0.5

(
α − 1

)
+ 1

]]] 1
b

+ 1
] 1
β
]
. (27)
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However, the 25th and 75th percentile for the random variable of the APWF distribution are obtained
as

s0.25 = τ
[
log

[[
−ψ−1 log

[
1 −

(
logα

)−1

log
[
0.25

(
α − 1

)
+ 1

]]] 1
b

+ 1
] 1
β
]
, (28)

s0.75 = τ
[
log

[[
−ψ−1 log

[
1 −

(
logα

)−1

log
[
0.75

(
α − 1

)
+ 1

]]] 1
b

+ 1
] 1
β
]
. (29)

Simulating the APWF random variable deviate from a uniform variates on the interval (0, 1). The Bowley’s
formula for finding the coefficient of skewness is given as

Sk(s) =
x0.75 + x0.25 − 2x0.5

x0.75 − x0.25
. (30)

The corresponding Moor’s formula for coefficient of Kurtosis is given as

Kk(s) =
x0.875 − x0.625 + x0.125 − x0.375

x0.75 − x0.25
. (31)

4.2. Survival and Reliability Function
The reliability function of the APWF random variable X is given as

RAPWF(s) =
1

(α − 1)

(
α −

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

( logα
i!

υ j,ξH(ξ+1)b+ j(s)
)i)
. (32)

4.3. Hazard Rate Function of the APWF Distribution
The failure rate function of the APWF random variable is given as

hAPWF(s) =

∞∑
i=0

∞∑
j=0

∞∑
ξ=0

( (logα)i+1υi+1
j,ξ h(ξ+1)b+ j(s)Hi

(ξ+1)b+ j(s)
)

i!
(
α −

(
logα

i! υ j,ξH(ξ+1)b+ j(s)
)i) )

(33)

Figure 2 shows the plot for the hazard rate function of the APWF distribution.

4.4. APWF Cumulative Hazard Function
The Cumulative hazard function of the APWF distribution is given as

HAPWF(s) = log(α − 1) − log
[
α −

∞∑
i, j,ξ=0

(
logαυ j,ξ + H(ξ+1)b+ j(s)

)i]
(34)

4.5. APWF Reversed Hazard Function
The Reversed Hazard Function of the APWF distribution is the ratio of the pdf of the APWF distribution

to the cdf of the APWF distribution. Thus,

rAPWF(s) =

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[ [log(α)]i+1

i!
υi+1

j,ξ h(ξ+1)b+1(s)Hi
(ξ+1)b+ j(s)

][ [log(α]i

i!
υi

j,ξH
i
(ξ+1)b+ j(s) − 1

]−1

. (35)

4.6. APWF Odds Function
The Odds function of the APWF distribution is given as

OAPWF(s) = FAPWF(s)RAPWF(s)−1, (36)

where RAPWF(s) is the APWF reliability function.
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Figure 2: The hazard rate function of the APWF distribution for different parameter values

4.7. The APWF Order Statistics

Let s1, s2, s3, · · · , sn be a APWF random variable from a finite population which has the value f (s) at s,
then the pdf of the pth order statistics is given as

1p(s) =
n!

(p − 1)!(n − p)!

[ 1
(α − 1)

]n[ ∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i

i!
υi

j,ξH
i
(ξ+1)b+ j(s) − 1

]p−1

×

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i+1

i!
υi+1

j,ξ h(ξ+1)b+ j(s)Hi
(ξ+1)b+ j(s)

(
α −

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

( logαυ j,ξH(ξ+1)b+ j(s)
i!

)i)n−p

.

(37)

The following is observed for p = 1, we obtained the minimum order statistics distribution as

11(s) =
n!

(n − p)!

[ 1
(α − 1)

]n ∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i+1

i!
υi+1

j,ξ h(ξ+1)b+ j(s)Hi
(ξ+1)b+ j(s)

(
α −

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

( logαυ j,ξH(ξ+1)b+ j(s)
i!

)i)n−1

.

(38)
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p = n we obtained the maximum order statistics distribution as

1n(s) =
n!

(n − 1)!

[ 1
(α − 1)

]n[ ∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i

i!
υi

j,ξH
i
(ξ+1)b+ j(s) − 1

]n−1

×

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i+1

i!
υi+1

j,ξ h(ξ+1)b+ j(s)Hi
(ξ+1)b+ j(s).

(39)

When n is odd. n = 2m + 1 ,and setting p = m + 1 , then the distribution of median is given as

1p(s) =
(2m+)!
m!m!

1
(α − 1)2m+1

[ ∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i

i!
υi

j,ξH
i
(ξ+1)b+ j(s) − 1

]m

×

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i+1

i!
υi+1

j,ξ h(ξ+1)b+ j(s)Hi
(ξ+1)b+ j(s)

(
α −

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

( logαυ j,ξH(ξ+1)b+ j(s)
i!

)i)m

.

(40)

when n is even, n = m2m and p = m + 1

1m+1(s) =
2m!

m!m!

[ 1
(α − 1)

]2m[ ∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i

i!
υi

j,ξH
i
(ξ+1)b+ j(s) − 1

]m

×

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i+1

i!
υi+1

j,ξ h(ξ+1)b+ j(s)Hi
(ξ+1)b+ j(s)

(
α −

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

( logαυ j,ξH(ξ+1)b+ j(s)
i!

)i)m−1

.

(41)

4.8. Probability Weighted Moments (PWM)

The PWM is a function can be used to obtain the parameter and quantiles function of a particular
distribution that may not be obtained in a closed form. The (µ, υ)th of PWM of random variable S is defined
as

ρ(µ, υ) =

∫
∞

0
sµ f (s)Fυ(s)ds =

∞∑
i,m=0

∞∑
j,ξ=0

Γ
(
1 −

µ

β

)
ti, j,ξ,mτ

µ
[
(ξ + 1)b + j

] µ
β (logα)i+1

(α − 1)i!
,

where

ti, j,ξ,m =
[
(ξ + 1)b + j + 1

] j (−1)ξ+m+1bψξ+1( j + 1)ξ

j!ξ!((ξ + 1)b + j)

[
(ξ + 1)b + 1

] µ
β−1

(
υ
i

)(
i

m

)
.

4.9. Parameter Estimation of the APWF Distribution

The parameter of the APWF distribution are obtained by maximum likelihood (MLE) method as follows:
Let s1, s2, s3, · · · , sn be a APWF random sample from an infinite population with a pdf f (s) at the point s with
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distribution of the vector APWF of parameter θ(ψ, b, β, τ, α)T , then the likelihood function is given as

n∏
i=1

f (s, ψ, b, β, τ, α) =ψnbnβnτnβ(logα)n 1
(α − 1)n

×

n∏
i=1

s−(β+1)
i exp

[ n∑
i=1

[
−b(

τ
si

)β
]] n∏

i=1

{
1 − exp

[
−(
τ
si

)β
]}−b−1

×exp
[ n∑

i=1

−ψ
{
exp

[(
τ
si

)β]
− 1

}−b]
α

∑n
i=1

[
1−exp

[
−ψ

{
exp

[
( τsi

)β
]
−1

}b]] (42)

Let ` denotes the log-likelihood function, then

` =n logψ + n log b + n log β + nβ log τ − n log(α − 1) + n log(logα) − (β + 1)
n∑

i=1

log si

n∑
i=1

[
−b

(
τ
si

)β]
+ (1 − b)

n∑
i=1

log
[
1 − exp

[
−

(
τ
si

)b]]
−

n∑
i=1

ψ
[
exp

[(
τ
si

)β]
− 1

]−b

+

n∑
i=1

[
1 − exp

[
−ψ

{
exp

[
(
τ
si

)β
]
− 1

}b]]
logα

(43)

However, taking the partial derivation of the Equation (43) with respect to the parameter ψ, b, β, τ and
α and equation to zero, we have

∂`
∂ψ

=
n
ψ
−

n∑
i=1

[
exp

[(
τ
si

)β]
− 1

]−b

= 0, (44)

∂`
∂b

=
n
b
−

n∑
i=0

(
τ
si

)β
−

n∑
i=0

log
[
1 − exp

[
−

(
τ
si

)β]]
+

n∑
i=1

ψ
[
exp

[(
τ
si

)β]
− 1

]−b

log
[ n∑

i=1

ψ
[
exp

[(
τ
si

)β]
− 1

]]
, (45)

∂`
∂β

=
n
β

+ n log τ −
n∑

i=1

log si +

n∑
i=1

[
−b

(
τ
si

)β]
log

[
−b

(
τ
si

)β]
+ (1 − b)

n∑
i=1

S′iβ
Si
−

n∑
i=0

p′iβ +

n∑
i=1

z′iβ, (46)

∂`
∂τ

=
nβ
τ
−

n∑
i=1

( b
si

)β
τβ−1 + (1 − b)

n∑
i=1

S′iτ
Si
−

n∑
i=0

p′iτ +

n∑
i=1

z′iτ, (47)

∂`
∂α

= −
n

α − 1
+ ψ′α + α−1

n∑
i=1

zi

lo1α
= 0, (48)

where
ψ = n log(logα),

Si = 1 − exp
[
−

(
τ
si

)β]
,

pi = ψ
[
exp

[(
τ
si

)β]
− 1

]β
,

zi =
[
1 − exp

[
−ψ

{
exp

[
(
τ
si

)β
]
− 1

}b]]
logα.
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5. Simulation Study and Real Life Applications

A simulation was carried out to test the flexibility and efficiency of the APWF distribution. Table 1 shows
the simulation for different values of parameters for the APWF distribution. The simulation is performed
as follows:

• Data are generated using

• xµ = τ
[
log

[[
−ψ−1 log

[
1 −

(
logα

)−1

log
[
µ
(
α − 1

)
+ 1

]]] 1
b

+ 1
] 1
β
]

0 < u < 1

• The values of the parameters are set as α = 0.5, τ = 2.0, ψ = 1.5, b = 0.5, and β = 3.0.

• The APWF random sample sizes were taken as n = 50, 100, 150, and 350.

• Each APWF random sample is replicated 5000 times.

In this simulation study, we investigated the mean estimates (MEs), variance, biases and means squared
errors (RMSEs) of the maximum likelihood estimate (MLEs).

The bias is calculated by for (S = α, τ, ψ, b, β)

B̂ias =
1

5000

5000∑
i=1

(
Ŝi − S

)
.

Also, the MSE is obtained as

M̂SE =
1

5000

5000∑
i=1

(
Ŝi − S

)2

.

Table 1 shows the simulation results for the Mean, Biases, Variances and MSE of the MLEs of APWF
model for some fixed parameter values. The results of the APWF Monte Carlo study in Table 1 shows
the MSEs and the biases decrease as the sample size increases and approach zero that corresponds to the
first-order asymptotic theory. The mean estimates of the parameters approach the true parameter values as
the sample size increases. The variance decreases in all the cases as the sample size increases.

5.1. Real life applications
The performance of the APWF model was examined with other competing distributions using the gas

fiber and carbon data real-life datasets. We considered the Akaike Information Criteria (AIC), Consistent
Akaike Information Criteria (CAIC), Bayesian Information Criteria (BIC), Hannan-Quinn Information Cri-
teria (HQIC), The Anderson Darling (A) statistic, Cramer-von Mises statistic (W), Kolmogorov Smirnov (KS)
statistic, Log-likelihood and the P value to compare the fits of the APWF model to other competing models
such as the Gompertz Weibull (GOW), Weibull Frechet (WFr), Kumaraswamy Lomax (KL), Gompertz (GL),
Beta Lomax (BL), and the Alpha Power Inverted Exponential (APIE) distributions.

5.1.1. First set of data is glass fiber data
Datasets were collected for 1.5 cm strengths of glass fibres data at the UK National Physical Laboratory

and was used to test the performance of the APWF distribution as used in [16- 20] .
Table 2 is the measure of comparison for the various distributions under consideration with APIE as

alpha power inverted exponential.



J. T. Eghwerido, O. T. Utoyo-Amrevugherea, E. Efe-Eyefia / TJOS 5 (3), 170–185 180

Table 1: Simulation results: mean estimates (AE), biases, Variance and mean squared errors (MSE) of α̂, ψ̂, b̂, τ̂ and β̂

Sample size Parameter AE Bias Variance MSE
α = 0.5 0.3788 -0.1212 0.0484 0.0631
τ = 2.0 1.8534 -0.1466 0.3809 0.4024

50 b= 0.5 0.5646 -2.4354 0.2211 6.1521
ψ = 1.5 1.2534 -0.2466 0.2564 0.3172
β = 3.0 1.6367 1.1367 0.3772 1.6692
α = 0.5 0.3866 -0.1134 0.0408 0.0537
τ = 2.0 1.9041 -0.0959 0.2558 0.2650

100 b= 0.5 0.4993 -2.5007 0.1585 6.4120
ψ = 1.5 1.2571 -0.2429 0.1206 0.1795
β = 3.0 1.5858 1.0858 0.1951 1.3741
α = 0.5 0.4062 -0.0938 0.0433 0.0521
τ = 2.0 1.9177 -0.0823 0.1878 0.1945

150 b= 0.5 0.5215 -2.4785 0.1457 6.2888
ψ = 1.5 1.2847 -0.2153 0.0692 0.1155
β = 3.0 1.5570 1.0570 0.1239 1.2412
α = 0.5 0.4575 -0.0425 0.0439 0.0457
τ = 2.0 1.9665 -0.0335 0.0858 0.0869

350 b= 0.5 0.5285 -2.4715 0.0992 6.2074
ψ = 1.5 1.3219 -0.1781 0.0255 0.0572
β = 3.0 1.4698 0.9698 0.0325 0.9731
α = 0.5 0.4841 -0.0159 0.0393 0.0396
τ = 2.0 1.9681 -0.0319 0.0671 0.0681

500 b= 0.5 0.5089 -2.4911 0.0993 6.3051
ψ = 1.5 1.3464 -0.1536 0.0149 0.0385
β = 3.0 1.4609 0.9609 0.0238 0.9472

Table 2: The performace rating of the APWF distribution with
glass fibres dataset

Distribution Parameter MLEs AIC CAIC BIC HQIC W A

APWF ψ̂ = 11.049
b̂ = 0.1156
β̂ = 0.3353 37.3734 38.4260 48.0891 41.5880 0.1808 0.9911
τ̂ = 10.098
α̂ = 0.3012

Gompertz Weibull α̂ = 0.2245
β̂ = 0.0092

38.3769 39.0666 46.9495 41.7486 0.2330 1.2832
ψ̂ = 0.7973
b̂ = 5.6176

Gompertz Lomax α̂ = 0.0046
β̂ = 8.1791

39.0055 37.6951 45.5780 40.3771 0.1685 0.9462
â = 0.5070
b̂ = 1.5158

Weibull Frechet α̂ = 3.61218
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Table 2 – Continued from previous page
Distribution Parameter MLEs AIC CAIC BIC HQIC W A

m̂ = 25.1859
39.0276 39.7812 47.3686 42.1676 0.2472 1.3566

β̂ = 0.1623
â = 0.2131

Kumaraswamy Lomax α̂ = 9.8352
β̂ = 45.3107

44.2055 44.8951 52.7779 47.5771 1.6446 1.9915
â = 15.1182
b̂ = 0.0483

Beta Lomax α̂ = 18.1737
β̂ = 26.7645

56.8068 57.4964 65.3793 60.1784 2.5426 3.1986
â = 10.8769
b̂ = 0.0329

APIE α̂ = 53.5634
λ̂ = 0.3509 196.3253 196.5253 200.611 198.0111 0.7775 4.2384

Table 3: Test statistic for the APWF distribution with glass fibres dataset

Distribution KS p-Value Log-likelihood
APWF 0.1236 0.2910 13.6867

Gompertz Weibull 0.1521 0.1087 15.1887
Gompertz Lomax 0.1542 0.0998 14.5027
Weibull Frechet 0.1552 0.0960 14.8177

Kumaraswamy Lomax 0.1854 0.0263 18.1027
Beta Lomax 0.2182 0.0049 24.4034

Alpha power inverted exponential 0.4646 3.0e-12 96.1627
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Figure 3: A plot of APWF distributions with the empirical histogram of the glass fibres data
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Figure 4: The fitted cdf of the APWF model for the glass data set

5.1.2. Second set of data carbon data
Our second set of data is from [21]. It consists of 100 observations taken on breaking stress of carbon

fibers (in Gba). Table 4 and Table 5 are the goodness-of-fit and the performance rating of the APWF
distribution using several test statistics for the carbon fibers dataset.

Table 4: Test statistic for the APWF distribution with glass fibres dataset

Distribution KS p-Value Log-likelihood
APWF 0.06082131 0.8687617 141.3111

Gompertz Weibull 0.0632502 0.8185524 141.2822
Gompertz Lomax 0.06365319 0.8125448 142.4323
Weibull Frechet 0.06251348 0.8293575 141.3857

Kumaraswamy Lomax 0.07543761 0.6198049 141.484
Beta Lomax 0.17654926 0.00459718 156.7625

Alpha power inverted exponential 0.3503104 4.384659e-11 209.1656
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Table 5: The performace rating of the APWF distribution with
glass fibres dataset

Distribution Parameter MLEs AIC CAIC BIC HQIC W A

APWF ψ̂ = 0.4603
b̂ = 2.7010
β̂ = 0.6398 282.3754 283.0137 295.4013 287.6472 0.0609 0.3719
τ̂ = 0.9554
α̂ = 6.1598

Gompertz Weibull α̂ = 2.2594
β̂ = −0.2017

290.6544 290.9854 300.985 294.7818 0.0648 0.3834
ψ̂ = 0.2650
b̂ = 2.9808

Gompertz Lomax α̂ = 0.0091
β̂ = 5.0656

292.8646 293.2857 303.2853 297.0821 0.0611 0.4763
â = 1.9848
b̂ = 0.6471

Weibull Frechet α̂ = 0.6942
m̂ = 3.5178

294.6000 295.0000 305.0000 298.8000 0.06892 0.4169
β̂ = 0.6178
â = 0.0947

Kumaraswamy Lomax α̂ = 3.7970
β̂ = 24.367

295.9681 291.3891 301.3888 295.1855 0.0842 0.4532
â = 0.0334
b̂ = 6.0885

Beta Lomax α̂ = 18.1737
β̂ = 26.7645

315.0974 317.4653 320.1753 317.4653 1.0896 2.0088
â = 10.8769
b̂ = 0.0329

APIE α̂ = 11.0025
λ̂ = 0.8694 422.3312 422.455 427.5416 424.44 0.3726 2.0427

6. Discussion

The performance of a model is determined by the value that corresponds to the highest Log-likelihood
or the lowest Akaike Information Criteria (AIC) value is considered as the best model. In the two real
life cases considered, the APWF distribution has the lowest AIC value with 37.37339 in glass fibres data
and 282.3754 in carbon data respectively. Also, the APWF has the value of log-likelihood as 13.68669 and
136.1877 for glass fibres and carbon data respectively. Hence, it competes favourably with other existing
model for the data used.

7. Conclusion

The concept of the APWF distribution has been defined, introduced and studied. The mathematical
expression for the pdf and cdf were examined. The statistical properties which include the order statistics
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Figure 5: A plot of APWF distributions with the empirical histogram for the carbon data
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Figure 6: The fitted cdf of the APWF model for the carbon data set

distribution, cumulative hazard function, quantile, reversed hazard function, median, hazard rate func-
tion and odds function have been derived. The shape of the distribution could be inverted bathtub or
decreasing. An application of the APWF model on a two real life data shows that the APWF distribution
competes favourably with the Gompertz Weibull and Exponential, and better than the Kumaraswamy
Lomax distribution, Beta Lomax distribution and some other families of distributions.
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