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An inverse coefficient problem for quasilinear pseudo-parabolic of heat
conduction of Poly(methyl methacrylate) (PMMA)

Irem Baglan?, Timur Canel”

“Department of Mathematics, Kocaeli University, Kocaeli-Turkey
bDepartment of Physics, Kocaeli University, Kocaeli-TURKEY

Abstract. In this research, we consider a coefficient problem of an inverse problem of a quasilinear pseudo-parabolic
equation with periodic boundary condition. It proved the existence, uniqueness and continuously dependence upon
the data of the solution by iteration method.

1. Introduction

Consider the equation

Uy — Uy — Ellyy —a(t)u = f(x,t,u), (x,t) € T, (D
with the initial condition
u(x,0) = @(x), x€[0,7], ()
the periodic boundary condition
u(0,1) = u(m,1), uc(0,1) = ux(m,1), 0<1 <T, 3
and the overdetermination data .
E@t) = /xu(x,t)dx,O <t<T, )
0

for a quasilinear parabolic equation with the nonlinear source term f = f(x,7,u).

Here I':= {0 <x< 7, 0 <t <T}. The functions ¢@(x) and f(x,z,u) are given functions on [0,7] and T x
(—o0, 00), respectively.

The inverse problem of determining unknown coefficient in a quasi-linear parabolic equation has generated an
increasing amount of interest from engineers and scientist [1-11].

Definition 1.1. The pair {a(t),u(x,t)} from the class C[0,T] x (C*! (') NC'0(T')) for which conditions (1)-(4) are
satisfied is called the classical solution of the inverse problem (1)-(4).
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2. Existence and Uniqueness of the Solution of the Inverse Problem

The main result on the existence and the uniqueness of the solution of the inverse problem (1)-(4) is presented as
follows:

We have the following assumptions on the data of the problem (1)-(4).

(A1) E(t) € C'[0,T].

(A2) p(x) € C*[0,7], 9(0) = 9(m), ¢ (0) = @' (7), _

(A3) Let the function f(x,#,u) is continuous with respect to all arguments in I x (—oo,0) and satisfies the follow-
ing condition

(1)

8(”)f(x,t,u) 3(”)f(x,t,11)
ax" ox"

<b(t,x)|lu—i| ,n=0,1,2

where b(x,t) € Lp(T'), b(x,t) >0,
Q) f(x,t,u) € C?[0,7],t € [0,T],
(3) f()CJ,M)‘x:O = f(XJ,M) X=T" fx (Oﬂt7u)|x:0 = fX(n7t7u)‘x:n"

By applying the standard procedure of the Fourier method, we obtain the following representation for the solution
of (1)-(3) for arbitrary a(t) € C[0,T] :

u(x,t) = >+ Y [uei(2) cos 2kx + ug (1) sin 2kx] ,

t

- — [a(T)dT
Z et (T) c0s 2kE + ug (T )sin2k<§]> " 4édr,

—(2k)% !
. >——[a(t)dT
uck(t) = Qck e!teey 0
T 2 t
2 ) & . ~COD — Ja(e)d
er //f (é,r, Moé ) + Y [uer(7) cos 2kE + uge(7) sm2k§]> cos2kE e TP % dédr,
k=1
0
—(2k)%t 77[1
) a(t)dt
Msk(t) = Qs e!te 0
1T 2 t
2 w(t) & , , ~BID — Ja(e)d
+7r(1—|—8(2k)2//f< , T, Oé )—1—2 [uek (T) o8 2kE + ug () sm2k§]> sin2kEe 'HEV7 % dédr.
k=1
00
t t
——[a(7)dt
u(x,t) = @e ©° + fg(’L‘,u) dt
— fa(o)r M ’ |
+Zcoska [ Hs(zk 0 T/fck T,u)e TR ~ e dt Q)
. 2k2k2'2 7fta(r)dr —20%0 2)__}“(1)(” ]
—|—Z sin2kx T —+—1+87/fsk T,u) e €0 T dt|,

T v T
where @y = % Jo(x)dx, o4 = % J @(x) cos 2kxdx, pg = % J @(x) sin2kxdx,
0 0 0
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3 T
fot,u) =2 jf(x,t,u)dx fa(t,u) = 2 [ f(x,t,u) cos2kxdx, fu(t,u) = 2 [ f(x,t,u)sin2kxdx( k=1,2,3,....)
0 0
Under the Condltlon (A1)-(A3), differentiating (4), we obtain

T
E,(l):/xu,(x,t)dx,OStST. (6)
0
(5) and (6) yield
2
) = g |E O+ )]
(202 : o .
1 & —(2k) l+(£2(k2)k)2 ——éa(r)d 1+(Ezkz>k 7744
E(;)Ekg 1+¢(2k)? Psic € 1+£ /fck T,u) dT )
Y fulew)
- sk\l, U
OF=

Definition 2.1. Denote the set
{u(t)} = {uo(t), uck(t),us(t),k = 1,...,n}, of continuous on [0,T] functions satisfying the condition

|u0 )
t by B. Let
max o0 +Z<mMWMH+£%WMN)<%y e

()| = max @l | ¥ p (max luei(£)] + max ask(t)>,be the norm in B.
0<t<T

It can be shown that B is Banach space.

Theorem 2.2. Let the assumptions (Al)-(A3) be satisfied. Then the inverse problem (1)-(4) has a unique solution.

Proof. Tterations for the Fourier coefficients of (5) are defined as follows:

T t
2 ——Ja™(t)dt
M8N+1>(t) = +E//f é T, uN )) e T d&dr,
00
t T f
(N+1) _ (0 I+E(2k)2 T
NG = O 1+e 7 //f& 7,u™) (£, 7)) cos 2KE e " iedr, @)
0 0
n 7(2k)2 ™) (g
WD)y = 0 2 // SR o TN fa @)
ug (1) ug (t)+ P TEwIETA) /) f(E,7,u™) (&,7))sin2kEe dédr
——t‘“(o) d —2h* **}“(O)(T)df e 77[&0)()
M(()O) (l) = e _{ (7) T7u£2> (t) _ (PCkeH—s(Zk)Z o 7M(O)( ) Qe 1+&(2k)2

Applying Cauchy inequality, Holder inequality, Bessel inequality and using Lipschitzs condition and taking the
maximum of both side, we have:
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] R o G I M A A e
< 191 F ol ol
+<\/;+2§>|b<xr|h @),
L+ 2 1080l

From the conditions of the theorem u(!) () € B.
Same estimations for the step NV,

u<N+1>(t)H = max
B 0<I<T

0]+ I (o,

lel + X (ol +loal)

+ ﬁ +2§>|b<x Dl

/T
7T Hf xvtaO)HLz

Since u™)(r) € B and from the conditions of the theorem, we have uN*1)(r) € B,

u?) (t)’ + max
0<i<T

o))

IN

u™) (1) H

B

{u()} = {uo(t),uck (1), ua (1), k=1,2,...} € B.

By same estimations,

/ 2 o
(1) p < E (t) T ,,”
Ha 2 cor E(t) +4\/6El Z"Pd(
m [4V6+2+ V2
+ 1606y |10
IE@)]| 46 B
LT (4ver2+v2)
IE @)l 46
Same estimations for the step N,
E/(l) 71:2 m
(N+1) t < + .
[0l = 50| v &l
T [(4V6+2+ V2
- bt yqry [ )
1E()]] 46

L7 4V6+2+ V2
IE@)]| 46

202
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Now we prove that the iterations ™1 (¢),a™*1) converge B and C[0, T], respectively.(as N — oo)
(uy ' (t) — u(0> s © 1 0
i (e) ) = 0O + L1050 = )+ ()0 ) )

Applying Cauchy inequality, Bessel inequality, Holder inequality, Lipschitzs condition in the last equation, taking
maximum of both side of the last inequality :

[0 -], < (L Bl [0,
L+ 2 100l
A=( i 2\\?)(”1;(“&2 H HB+||f(xat70)HL2(l"))'

Applying Cauchy inequality, Holder Inequality, Lipschitzs condition and Bessel inequality to the last equation and
taking maximum of both side of the last inequality, we obtain

o= 0], < HEZ>|<4VF:i?+Vﬁ>”b“tL<FH<”“>‘”““0HB
™ T > m
(!IEZ:)N?H ' HE;mH N ) 0 =a"0)|

where

g - _F [4V6+2+V2
—E@I 46

- nTM 2T >
c - (e o Ll

B
< B W5y _ (0
con < T2 1Dl [0 00|

[@0-d0], < (fE+ bl [ )],

*/7>BT M)y

Ha(l)(,) _a(O)(t)H

B

Hy 3+

[0 _”U)(I)HB < {( \/er 2‘/2) (1 + 1B_TC) }A 15, 2)l )

a0 -0

For the step N :

[a¥ @) =] < T2 by [ ) 0

clo,r] — B
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N
oo, = {5 20 (1) | Jittenttn

By the Weierstrass M test we deduce from (9) that the series Y [u®™+D (1) —u™) (t)‘ is uniformly convergent to
N=0

an element of B. However,the general term of the sequence {u(N +1) (t)} may be written as

(N-H) n+1 )(I)

)

so the sequence {u<N +1>(z‘)} is uniformly convergent to an element of B because the sum on the right is the N
th partial sum of the aforementioned uniformly convergent series. So ™D — u®™) N — oo, then a¥ 1) — a®)

N — oo,
Therefore u¥*1)(r) and a¥*1)(r) converge in B and C[0, T], respectively.

Now let us show that there exists u and a such that

lim u™ (1) = u(r), lima™*D (1) = a(r).
N—oo N—oo

a0, < (2 2 b [ - a0 ©
N
g {( Ve 2 (14 IB_TC)} 16Dl
+ % Q\GMH a(N)(T)HC[o,T]’
la®)=a™ V@) < by [ule) — V@) (10)

S1-c¢
clo.1]
Let us consider (10) in (9) and apply Gronwall’s inequality to (9) and taking maximum of both side of the last

inequality, we have

-], <

N+
\ZW <( \/Z+ 2\/\/@) (1 + 1B_TC>> 160, )11, (r)

2
xexpz<1+(ﬁ +2§>(1+3TC)> eI,

We obtain uV T — 4, gV 5 4 N — oo,
For the uniqueness, we assume that the problem (1)-(4) has two solution pair (a,u), (b,v). Applying Cauchy

inequality, Holder Inequality, Lipschitzs condition and Bessel inequality to |u(¢) —v(¢)| and |a(z) — b(t)|, we obtain

)0l < (5 M at) b0l

T \/E t T
T 0/ O/b2<»:,r>u<r>—v<r>|2d»:dr ,

Nl—=
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=

lat) b0 lcor < 1o | [ [#E D@ —v(Pdgar |
00

Jutr) — v(e) I < [( Ve (1 12¢)

applying Gronwall’s inequality to (11) we have
u(t) =v(r). Hence a(t) = b(r). O

Bl—=

[ [PEauE-vwpagas)| . an
00

This completes the proof of Theorem 2.2.

3. Continuous Dependence of (a,u) upon the data

Theorem 3.1. Under assumption (Al)-(A3) the solution (r,u) of the problem (1)-(4) depends continuously upon the
data @ E.

Proof. Let ® = {¢, a, f} and ® = {Q, @, f} be two sets of the data, which satisfy the assumptions (A1) — (A3).
Suppose that there exist positive constants M,, i =1,2 such that

lallcijo.r) < M, l[allcro ) < My, [l csjo,2) < M2, [[@llcaj,z) < Mo
Let us denote [|®]| = ([[allcto ) + [9llc3jo.z + I fllcom))-

By using same estimations to u — %, we obtain

lu—ul| < Ms||o—a| (12)

applying Gronwall’s inequality to the last equation, we obtain

lu—a* < 2M3|o—o|
t

X exp 2M4//r2 )b (E,1)dEdn

0

For ® — ® then u — u. Hence a —a. O

4. Numerical Procedure for the nonlinear problem (1)-(4)

We construct an iteration algorithm for the linearization of the problem (1)-(4):

dum 92y 93u

_ _ _ _ (n—1)

3 PR a(t)u flx,tu ), (xt)eD (13)
u0,1) = u"(mr1), 1€[0,T] (14)
u0,0) = u(m,1)=0,1€10,T] (15)

WM(x,0) = @), x€0,7]. (16)
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Let u™ (x,2) = v(x,1) and f(x,t, u(”")) = f(x,t). Then the problem (13)-(16) can be written as a linear problem:

v 2%y a3

5% T 2+sa 237 +r(0)f(x,1)  (x,0) €D 17
v(0,1) = w(m,z1), t€[0,T] (18)
ve(0,1) = v(m,1), t€10,7T] (19)
v(x,0) = o), xe0,m] . (20)

After linearization, we use the finite difference method to solve (17)-(20).

We subdivide the intervals [0,7] and [0,7] into subintervals Ny and N; of equal lengths h = §- and 7 = —,
respectively. We choose the implicit scheme which is absolutely stable and has a second-order accuracy in & and a
first-order accuracy in 7. The implicit scheme for (17)-(20) is as follows:

1/ . . 1 1 . . ) ~
,(v-.f“_vz) (v 2! +v,+1)+eﬁ [(V{jll—zv{+1+v{jf)—(v{ L2l v ) e =g

T \! i 2n2
21)
v =i, (22)
V= Vi1 (23)
vj—l—vj .
1 5 Ny :vlj\/x—kl? (24)

where 1 <i < N, and 0 < j < N, are the indices for the spatial and time steps respectively, v =v(x;,1)), 0 = @(x;),
fi] f (x, ,tj), xi =ih,tj = jt. At the level r = 0, adjustment should be made according to the initial condition and the
compatibility requirements.

Now, let us construct the predicting-correcting mechanism. First, integrating the equation (1) with respect to x
from O to 7 and using (3) and (4), we obtain

CE(1) + [xF e, t)dx+ vy (7,1)

a(r) = ) : (25)

The finite difference approximation of (25) is

— (B =) [o+ () + (=) /7
EJ ’

al =
where E/ = E(t;), j=0,1,...,N,
For j =0, ‘
We denote the values of a/, v/ at the s-th iteration step .and the values of ¢; provide us to start our computation.
We denote the values of p/, v{ at the s-th iteration step ar/ () v{ (S), respectively. In numerical computation, since the
time step is very small, we can take a/*1(0) = g/, vﬁl(o) = v{, j=0,1,2,..N,, i=1,2,....N,. Ateach (s+ 1)-th
iteration step we first determine a/ +1(+1) from the formula

_ (Ej+1(5+1) Ei(+1) )/T+(ﬁn) J(s+1) ( 1]V+1(S+1) v};/(f+1)) /T

J+1(s+1) _
a Ei(s+1)

Then from (21)-(24) we obtain
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1/ . . | o
;(v,i/+1(s+1)_vlg+1(s)> — ﬁ(V{irll(erl)_2Vil+1(s+1)+V{i11<5+1)) -
I . ' | | |
e (A R T R B (VAR AR P ]
i j+H1(s+1 ~ii

+aly[ = @7
=ik (28)

Vj(S)"’Vj(S) )
=k (29)

The system of equations (26)-(29) can be solved by the Gauss elimination method and vlj 6D s determined. If the

difference of values between two iterations reaches the prescribed tolerance, the iteration is stopped and we accept
the corresponding values a/+16+1) V{H(Hl)(i =1,2,...,Ny) asa/T!, v{“(i =1,2,...,N,), on the (j+ 1)-th time step,
respectively. In virtue of this iteration, we can move from level j to level j+ 1.

5. Conclusions

The inverse problem regarding the simultaneously identification of the time-dependent source and the temperature
distribution in one-dimensional quasilinear pseudo parabolic equation with periodic boundary and integral overde-
termination conditions has been considered. This inverse problem has been investigated from both theoretical and
numerical points of view. In the theoretical part of the article, the conditions for the existence, uniqueness and con-
tinuous dependence upon the data of the problem have been established. The problem is solved implicit difference
scheme and an example is given.
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