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A new study on focal surface of a given surface
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Abstract. Focal surfaces are special cases of line congruences. With the aid of the definiton of a focal
surface of a given surface M, we obtain a new type of focal surface in Galilean 3-spaceG3. We show that the
focal surface we found is not the same type of surface as the given surface. We present the visualizations of
the focal surface and the given surface with an example. Lastly, by searching the curvature functions, we
give the minimality conditions of the focal surface.

1. Introduction

The concept of line congruences is first defined in the area of visualization by Hagen et al in 1991 [8].
Actually, line congruences are surfaces which are obtained from by transforming one surface to another by
lines. Focal surface is one of these congruences. For a given surface M with the parametrization X(u, v), the
line congruence is defined as

C(u, v, z) = X(u, v) + zE(u, v). (1)
Here E(u, v) is the set of unit vectors and z is a distance. For each pair (u, v), the equation (1), expresses a
line of the congruence and called as generatrix. On every generatrix of C, there are two points called as
focal points and the focal surface is the locus of the focal points. If E(u, v) = N(u, v), the unit normal vector
field of the surface, then C is a normal congruence. In this case, the parametric equation of the focal surface
C = X∗(u, v) of X(u, v) is given as

X∗(u, v) = C(u, v, z) = X(u, v) + κi
−1N(u, v); i = 1, 2 (2)

where κis; (i = 1, 2) are the principal curvature functions of X(u, v) [7]. Focal surfaces are the subject of
many studies such as [7, 15–17, 23].

Galilean geometry is a non-Euclidean geometry and associated with Galilei principle of relativity. This
principle can be explained briefly as ”in all inertial frames, all law of physics are the same.” (Except for
the Euclidean geometry in some cases), Galilean geometry is the easiest of all Klein geometries, and it is
revelant to the theory of relativity of Galileo and Einstein. One can have a look at the studies [20, 24] for
Galilean geometry. Recently, many works related to Galilean geometry have been done by several authors
in [2, 6, 21].

Tubular surfaces are special cases of canal surfaces which are the envelopes of a family of spheres. In
canal surfaces, center of the spheres are on a given space curve (spine curve), and the radius of the spheres
are different. As to tubular surfaces, the radius functions are constant. These surfaces have been widely
studied in recent times [4, 10, 11, 13, 14, 18]. In Galilean 3-space, tubular surfaces are studied in [5].
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2. Preliminaries

In Galilean 3-space G3, we can give the following basic concepts.
The vector a = (a1, a2, a3) is isotropic if a1 = 0 and non-isotropic otherwise. Thus, for the standard

coordinates (x, y, z), the x-axis is non-isotropic while the others are isotropic. The yz-plane, i.e. x = 0, is
Euclidean and the xy-plane and xz-plane are isotropic. The scalar product of the vectors a = (a1, a2, a3) and
b = (b1, b2, b3) and the length of the vector a = (a1, a2, a3) in G3 are respectively defined as

〈a, b〉 =

{
a1b1, if a1 , 0 ∨ b1 , 0

a2b2 + a3b3, if a1 = 0 ∧ b1 = 0, (3)

‖a‖ =

{
|a1| , if a1 , 0

a2
2 + a2

3, if a1 = 0. (4)

The cross product of the vectors a = (a1, a2, a3) and b = (b1, b2, b3) in G3 is also defined as

a ∧ b =

∣∣∣∣∣∣∣∣
0 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣∣∣ (5)

[19]. An admissible unit speed curve α : I ⊂ R→ G3 is given with the parametrization

α(u) = (u, y(u), z(u)). (6)

The associated Frenet frame vectors t,n,b on the curve is given as

t(u) = (1, y′(u), z′(u)),

n(u) =
1
κ(u)

(0, y′′(u), z′′(u)), (7)

b(u) =
1
κ(u)

(0,−z′′(u), y′′(u)),

where κ(u) =

√(
y′′(u)

)2 + (z′′(u))2 and τ(u) =
det(α′(u),α′′(u),α′′′(u))

κ2(u) are the curvature and the torsion of the
curve, respectively. Thus, the famous Frenet formulas can be written as

t′ = κn,
n′ = τb, (8)
b′ = −τn.

Let M be a surface parametrized with

X(u1,u2) = (x(u1,u2), y(u1,u2), z(u1,u2)) (9)

in G3. To represent the partial derivatives, we use

x,i =
∂x
∂ui

, x,i j =
∂2x
∂ui∂u j

, 1 ≤ i, j ≤ 2. (10)

If x,i , 0 for some i = 1, 2, then the surface is admissible (i.e. having not any Euclidean tangent planes). The
first fundamental form I of the surface M is defined as

I = (11du1 + 12du2 )2 + ε(h11d2
u1

+ 2h12du1 du2 + h22d2
u2

), (11)
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where 1i = x,i, hi j = y,i y, j +z,i z, j; i, j = 1, 2 and

ε =

{
0, if du1 : du2 is non-isotropic,
1, if du1 : du2 is isotropic. (12)

Let a function W is given by

W =

√
(x,1 z,2 −x,2 z,1 )2 +

(
x,2 y,1 −x,1 y,2

)2. (13)

Then, the unit normal vector field is given as

N =
1
W

(0,−x,1 z,2 +x,2 z,1 , x,1 y,2 −x,2 y,1 ). (14)

Similarly, the second fundamental form II of the surface M is defined as

II = L11d2
u1

+ 2L12du1 du2 + L22d2
u2
, (15)

where
Li j =

1
11

〈
11(0, y,i j , z,i j ) − 1i, j(0, y,1 , z,1 ),N

〉
, 11 , 0 (16)

or
Li j =

1
12

〈
12(0, y,i j , z,i j ) − 1i, j(0, y,2 , z,2 ),N

〉
, 12 , 0.

The Gaussian and the mean curvatures of M are defined as

K =
L11L22 − L2

12

W2 , H =
12

2L11 − 21112L12 + 12
1L22

2W2 . (17)

A surface is called as flat (resp. minimal) if its Gaussian (resp. mean) curvatures vanish [2, 20]. The
principal curvatures κ1 and κ2 of the surface M are given as

κ1 =
12

2L11 − 21112L12 + 12
1L22

W2 , κ2 =
L11L22 − L2

12

12
2L11 − 21112L12 + 12

1L22
, (18)

respectively [22].

3. Focal Surface of Tubular Surface in G3

A tubular surface M in G3 at a distance r from the points of spine curve α(u) = (u, y(u), z(u)) is given
with

M : X(u, v) = α(u) + r(cos vn + sin vb). (19)

Writing the Frenet vectors of α(u) in (19), the parametrization can be given as

M : X(u, v) = (u, y(u), z(u)) +
r
κ

[
cos v(0, y′′(u), z′′(u)) + sin v(0,−z′′(u), y′′(u))

]
. (20)

From (20),
11 = u,1 = 1, 12 = u,2 = 0. (21)

The tangent vectors Xu, Xv and the normal vector N of M are given by

Xu = t − rτ sin vn + rτ cos vb, (22)
Xv = −r sin vn + r cos vb,
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and
N = − cos vn − sin vb. (23)

Here W = r. The coefficients of the second fundamental form are obtained as

L11 = −κ cos v + rτ2, L12 = rτ, L22 = r. (24)

From, (21) and (24), the curvature functions of M are obtained as

K =
−κ cos v

r
, H =

1
2r

(25)

[5].

Corollary 3.1. [5] Tubular surfaces are constant mean curvature surfaces in Galilean space.

By the equation (18), we obtain the principal curvatures κ1, κ2 of M as

κ1 = −κ cos v and κ2 =
1
r
. (26)

For the function κ2 = 1
r , the focal surface degenerates to a curve. Thus, we obtain the focal surface M∗ of M

for the function κ1 = −κ cos v as

M∗ : X∗(u, v) = α(u) +

(
r +

1
κ(u) cos v

)
(cos vn + sin vb), (27)

where κ , 0.

Corollary 3.2. The focal surface M∗ of M is not a canal surface.

Proposition 3.3. If the spine curve α(u) is a straight line or equivalently M is flat, we cannot construct the focal
surface of M.

Example 3.4. Let us consider the cylindrical helix α(u) = (u, cos u, sin u) in G3. The Frenet frame vectors of the
spine curve α(u) is given by

t(u) = (1,− sin u, cos u),
n(u) = (0,− cos u,− sin u),
b(u) = (0, sin u,− cos u).

The tubular surface M has the following parametrization

X(u, v) = (u, cos u − r cos(u + v), sin u − r sin(u + v)) .

[5]. Then from the equation (27), we write the parametrization of the focal surface M∗ of M as in the following:

X∗(u, v) = (u,−r cos(u + v) + tan v sin u,−r sin(u + v) − tan v cos u) .

By using the maple programme, we plot the graph of the tubular surface and its focal surface for the value r = 2 inG3.

For the focal surface M∗, the tangent space is spanned by the vectors

(X∗)u = t(u) + λ1(u, v)n(u) + λ2(u, v)b(u), (28)
(X∗)v = −r sin vn(u) + λ3(u, v)b(u),
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Figure 1: Tubular surface M and the focal surface M∗

where

λ1(u, v) =
−κ′(u)

(κ(u))2 − rτ(u) sin v −
τ(u)
κ(u)

tan v,

λ2(u, v) =
−κ′(u)

(κ(u))2 tan v + rτ(u) cos v +
τ(u)
κ(u)

, (29)

λ3(u, v) =
1

κ(u) cos2 v
+ r cos v.

Thus, from (28), W∗ = ((λ3(u, v))2 + (r sin v)2)
1
2 and the unit normal vector field N∗ of M∗ is

N∗ =
−λ3(u, v)n(u) − r sin vb(u)

W∗
. (30)

Further, we get
1∗1 = u,1 = 1, 1∗2 = u,2 = 0. (31)

The second partial derivatives of X∗ are

(X∗)uu = λ4(u, v)n(u) + λ5(u, v)b(u), (32)
(X∗)uv = λ6(u, v)n(u) + λ7(u, v)b(u),
(X∗)vv = −r cos vn(u) + λ8(u, v)b(u),

where

λ4(u, v) = κ(u) + (λ1(u, v))u − τ(u)λ2(u, v), (33)
λ5(u, v) = (λ2(u, v))u + τ(u)λ1(u, v),
λ6(u, v) = (λ1(u, v))v ,

λ7(u, v) = (λ2(u, v))v

λ8(u, v) = (λ3(u, v))v .

Thus from the equations (30)-(33), the coefficients of the second fundamental form become

L∗11 =
−λ3(u, v)λ4(u, v) − λ5(u, v)r sin v

W∗
, (34)

L∗12 =
−λ3(u, v)λ6(u, v) − λ7(u, v)r sin v

W∗
,

L∗22 =
λ3(u, v)r cos v − λ8(u, v)r sin v

W∗
.

By using the equations (31) and (34), we give the following theorems:
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Theorem 3.5. Let M be a tubular surface given with the parametrization (19) and M∗ be the focal surface of M with
the parametrization (27) in G3. Then, the Gaussian and the mean curvatures of M∗ are

K∗ =
1

(W∗)4

{
−λ2

3λ4r cos v + λ3λ4λ8r sin v − λ3λ5r2 sin v cos v
+λ5λ8r2 sin2 v − λ2

3λ
2
6 − λ

2
7r2 sin2 v − 2λ3λ6λ7r sin v

H∗ =
λ3r cos v − λ8r sin v

2(W∗)3 . (35)

Corollary 3.6. If the focal surface M∗ is minimal, then

r = −
1

κ(u) cos3 v
.

Proof. Let M∗ be the focal surface of M with the parametrization (27) in G3. If M∗ is minimal, then
λ3r cos v − λ8r sin v = 0. Since the functions cos v and sin v are linearly independent, λ3 = λ8 = 0 i.e.
λ3 = (λ3)v = 0 which corresponds to the last equation.
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[4] Bulca B, Arslan K, Bayram B, Öztürk G. Canal surfaces in 4-dimensional Euclidean space. Libertas Mathematica. 32, 2012, 1–13.
[5] Dede M. Tubular surfaces in Galilean space. Math. Commun. 18, 2013, 209–217.
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[12] Kişi İ, Öztürk G. Spherical product surface having pointwise 1-type Gauss map in Galilean 3-space G3. International Journal of

Geometric Methods in Modern Physics. 16(12), 2019, 1–10.
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