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Abstract. In this paper, we introduce a new subclass of analytic functions in the open unit disk U with
negative coefficients defined by normalized of the az? ]g (2) + bz], (z) + cJs (z) function, where [ (z) is called
the Bessel function of the first kind of order 9. The object of the present paper is to determine coefficient
inequalities, inclusion relations and neighborhoods properties for functions f (z) belonging to this subclass.

1. Introduction

Let A be a class of functions f of the form

f@)=z+ Z a,z" (1)
n=2

that are analytic in the open unit disk U = {z : |z| < 1}. Denote by A(n) the class of functions consisting of
functions f of the form

)

f@=z=) a" 2)

n=2

which are analytic in U.
We recall that the convolution (or Hadamard product) of two functions

f@=z+ Zanz” and g(z) =z + Z b,z"
n=2 n=2

is given by
(f+9@ =2+ ) abz" =g+ f2) (zeU).

n=2
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Note that f+g € A.
Next, following the earlier investigations by Goodman [8], Ruscheweyh [16], Silverman [18] and Altintas
etal. [1, 2] (see also [4]-[7], [10], [12], [14]-[16]), we define the (1, 5)—neighborhood of a function f € A(n) by

Nos (f) = {ge&’{(n):g(z) =z-) bz"and ) nla, b, 36}. 3)

n=2 n=2

For e(z) = z, we have

Ny (e) = {g €eAm):g9(z)=z- Z b,z" and Z n by < 6}. 4)
n=2 n=2

A function f € A(n) is a—starlike of complex order y, denoted by f € S;,(B,y) if it satisfies the following
condition

1(zf'(2)
‘)%{14.)—/(]((2) —1)}>ﬁ (yeC\{0},0<B<1,zeU),

and a function f € A(n) is f—convex of complex order y, denoted by f € C,(B, y) if it satisfies the following
condition

‘R{1+ 12f (Z)}>5 (yeC\[0},0<p<1,zeU).

v e
The Bessel function of the first kind of order 9 is defined by [13, p.217]
B had (-1)" (Z )2n+3
]S(Z)‘Zén!r(n+9+1) 2 (e0). ©

We know that it has all its zeros real for 9 > —1. Here now we consider mainly the general function
N; (2) = az’[ (2) + bzJ§ (2) + ¢]s (2)

studied by Mercer [11]. Here, asin [11], g = b —a and
(c=0andgq#0)or (c>0andg>0).

From (5), we have the power series representation

Ns (z) =

QO+ 1Y (= ceO ©

L nll (n+9 +1) 2

where Q(9) =ad(w—-1)+ b3 +c (a,b,c € R). Lastly, Baricz, Caglar and Deniz [3] obtained sufficient and
necessary conditions for the starlikeness of a normalized form of N by using results of Mercer [11], Ismail
and Muldoon [9] and Shah and Trimble [17].

Note that Ny is not belong to the class A. Therefore, we consider the following normalization for the
function Ny(z) :

2T (9 +1)zl2

TN s ( ‘/E) . @)

In the rest of this paper, the quadratic Q (9) = a3 (8 — 1) + b9 + ¢ will always provide on (g, b, ¢ € R)
(c=0and g #0) or(c>0and g > 0). Moreover, 9 is the largest real root of the quadratic Q (9) defined
according to the above conditions.

Easily, we can write

Ny (z) =

(zelU). 8)

e CD)TTE+ QO +2n - 1),
No(@)=z+ Z_; - DT +mQE)
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In terms of Hadamard product and Ny (z) given by (8), a new operator Ny : A — A can be defined as
follows:

(-D)"™T (S +1)QE® +2(n - 1))
- DIT S +n)0@E)

Mﬂ@(%ﬁﬂﬂ%+z 2 (ze ). ©)

If f € A(n) is given by (2) then we have

> (-1)™MT O +1)QE +2(n - 1))
- 1)T O +m)0E)

Nsf(z) = (zeU). (10)

n=2

Finally, by using the differential operator defined by (10), we investigate the subclasses M5(8,)) and
R3(B, v, w) of A(n) consisting of functions f as following:

Definition 1.1. The subclass M{(B,y) of A(n) is defined as the class of functions f such that

Wq@ﬂ
Nsf (2)

]‘ <Bp  (zeU) (11)

where y € C\ {0} and 0 < B < 1.

Definition 1.2. Let RY(B, y, 1) denote the subclass of A(n) consisting of f which satisfy the inequality

1 Nsf ()
‘;h—m /

<B (zeU) (12)

+MNM@W—4

wherey e C\ {0} and0<pf<1,0<u<1.

In this paper, we obtain the coefficient inequalities, inclusion relations and neighborhood properties of the

subclasses M{(B,7) and R§(B, Y, 1)

2. Coefficient inequalities for the classes M (B, ) and RY(B, y, )

Theorem 2.1. Let f € A(n). Then f € MY(B,y) if and only if

o (D)™ + 1)QE +2(n— 1))
L T (- DT (S +m Q) [ =1+ 8lyl]an <6 (13)
wherey € C\ {0} and 0 < f < 1.
Proof. Let f € A(n). Then, by (11) we can write
2[Nof )]
%{W—l} > —‘B|)/| (zelU). (14)

Using (2) and (10), we have,

o (~1)"T(+1)Q(8+2(n-1))
- nz_: Do U~ anz"
R — > — zeU). 15
f (D™ TE+1)QE+2(n-1)) p |7/| ( ) (15)
Z- I DT E+m0E)
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Since (15) is true for all z € U, choose values of z on the real axis. Letting z — 1, through the real values,
the inequality (15) yields the desired inequality

i (~D"™TE + 1O +2(n—1)) [

- DI E+mQE) 1+p |7’|]“n <pll.

Conversely, supposed that inequality (13) holds true and |z| = 1, we obtain

2 (1) (9+1)Q(9)

z [\I’Mf (Z)], ~
Wuf(2)

‘ i": (1" T +1)Q(9+2(n—1)) [n—1]a,z"

Z (=)™ T(8+1)Q(8+2(n—1))

T T DT (+m0E) Mz

(-1)"™T(O+1)Q(8+2(n—1))
Z o 1 Uan

IN

(=)™ T(8+1)Q(8+2(n—1))
Z T G-DT(+mQ(s)

< ﬁ|7/)

Hence, by the maximum modulus theorem, we have f(z) € M{(,7), which establishes the required
result. O

Theorem 2.2. Let f € A(n). Then f € R(B,y, 1) if and only if

i (~D"™I(@E + QB +2(n—1))
41 — )T (S + n) Q(9)

[1+u(n-1D]a, <Bly| (16)

foryeC\{0},0<p<1land0<u<1.

Proof. We omit the proofs since it is similar to Theorem 2.1. [J

3. Inclusion relations involving /V, s(e) of the classes M’; (B, y) and Rg(ﬁ, Y, )
Theorem 3.1. If

__ 8hire+200) (] <1) -
(1+By[) T+ 1QE +2)
then M’;(,B, Y) C Ny ().
Proof. Let f(z) € M{(B,7). By Theorem 2.1, we have
-TE+1)Q(®+2) =
TE+20© O +5|7’|);”” =
which implies
- Bly]
Z < “T(E+1)QE+2) : (18)

—reoe LA '7/|)
Using (13) and (18), we get

T +1)QE +2) v TE+1)Q(9+2) =
TE+2QE &M S M+ —reenom O F L

=2
2P| _
1 +ﬁ()/|
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That is,

fi" ST E+2Q®)
e (1+B]y]) TS + DQCS + 2)
Thus, by the definition given by (4), f(z) € Nn,b(e), which completes the proof. O

Theorem 3.2. If

-8B [y|T (8 +2)Q(3) (1V| 3 1)

S0+ )TE+ 100G +2) (19)
then R1(8,, 1) C Niys (©).
Proof. For f(z) € R§(B,y, 1) and making use of the condition (16), we obtain
-T(S +1)Q® +2) -
1200 O +u)nzz;‘an <8yl
so that | |
. =4 |y|T (9 +2)Q(9)
2 S e Iae £ @0

n=2

Thus, using (16) along with (20), we also get

IS+ 1M +2) v (S +1)Q(® +2) w

HMareT20m) &M < b+ 0-0Irenam E+200) =™
Bl
< Bl =D
Hence,
i -8B [y|T (8 +2)Q(9)
na, < =
A+wIS+1DOE +2)

n=2
which in view of (4), completes the proof of theorem. [
4. Neighborhood properties for the classes Mg(ﬁ, y) and R";([S’, Y, 1)
Definition 4.1. For 0 < n < land z € U, a function f(z) € Mg/y(a, y) if there exists a function g(z) € MY(B,y)

such that @)
z
‘—2)—1’<1—n. (21)

For 0 <1 < 1and z € U, a function f(z) € Ry(B,y, u) if there exists a function g(z) € R} (,y, 1) such
that the inequality (21) holds true.

Theorem 4.2. If g(z) € M{(B,y) and

5(1+Bp)TE +1QE +2)
n=1- (22)
2[(1+BP)TE+DQE +2) +4py|T (3 +2) Q)]

then Ny (9) € ME(B, 7).
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Proof. Let f(z) € Nys(g). Then,

(o]

Z 1 |ay — byl <6, (23)

n=2

which yields the coefficient inequality,

(o]
Z la, — byl <
n=2

Since g(z) € M5(B,y) by (18), we have

(n € IN).

NI O

ib ~4B]y|T (8 +2)Q(9)

ST A+ Blyhre + Qe +2)° (24)

and so
f (z) 1' E‘Z s =
9(2) 1 § b,

F(S+1)Q 9+2)
6 areeam U TB |V|)

2 G062 (1 4 gly)y + gy

= 1-n.

IA

Thus, by definition, f(z) € MS(B,y) for n given by (22), which establishes the desired result. [
Theorem 4.3. If g(z) € Ry (B, 7, 1) and
o1+ I +1OE +2)

T]=1_ (25)
2[A+ )T +1) QO +2) +48]y|T (8 +2) Q)]

then Ny (9) C REB, Y, ).

Proof. We omit the proofs since it is similar to Theorem 4.2. [J
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