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Abstract. In this paper, we established the group Γ̂0,n(N) by group Γ0,n(N) extending with reflection. Then,
we obtain boundary components in signature of the group and we get some calculation for link periods
2, 3,∞. And then, we constitute chain of reflections with fixed points via Extended Hoore-Uzzell Theorem
in the group. Finally, The number of boundary components in the signature of some groups Γ̂0,p(p) and
Γ̂0,p(p2), p is a prime number, and the number of link periods was found.

1. Introduction and Preliminaries

Modular group and its congruence subgroups have an important role on discrete group theory. Many
authors studied at this area such as Akbaş [1], Beşenk [3], Jones [6], Kader [7], Tekcan [10], etc.

Non-euclidean crystallographic groups (written NEC group) have an important role on discrete group
theory and firstly defined by Wilkie [11]. And then Bujalance [4], Jones [6], Macbeath [8], etc. studied. So in
this paper, we research signatures and boundary components of a special groups. And now we give some
basic definitions and theorems for understanding our paper.

Definition 1.1. [5] Let

T(z) =
az + b
cz + d

, a, b, c, d ∈ R, ∆ = ad − bc > 0; (1)

then dividing the numerator and denominator by
√

∆ we obtain

T(z) =

(
a/
√

∆
)
z +

(
b/
√

∆
)(

c/
√

∆
)
z +

(
d/
√

∆
)

and as
(
a/
√

∆
)(

d/
√

∆
)
−

(
b/
√

∆
)(

c/
√

∆
)

= 1, this shows that T ∈ PSL(2,R). We can show the elements of PSL(2,R)
as follows,

±

(
a b
c d

)
, a, b, c, d ∈ R and ad − bc = 1.
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Remark 1.2. This set is a group of all linear fractional transformations. It is the automorphism group of the upper
half plane H := {z ∈ C : Im(z) > 0}.

Definition 1.3. [5] The modular group Γ = PSL(2,Z) is the subgroup of PSL(2,R).

Definition 1.4. [11] The group G consist of all transformations of one or other of the two forms:

w =
az + b
cz + d

, ad − bc = 1 a, b, c, d ∈ R, (2)

w =
az + b
cz + d

, ad − bc = −1 a, b, c, d ∈ R. (3)

Those of the form (2) preserve orientation, and form a subgroup LF(2,R) of index2-the hyperbolic group; Those of the
form (3) do not preserve orientation. G maps H into itself. The topology on G comes from the numbers a, b, c, d ∈ R.

Definition 1.5. [11] Firstly, we assume that T ∈ PSL(2,R) \ I and T(z) = az+b
cz+d . Then

1. Hyperbolic if |a + d| > 2 with two fixed points on the real axis,
2. Elliptic if |a + d| < 2 with one fixed point in H,
3. Parabolic if |a + d| = 2 with one fixed point multiplicity two on the real axis.

Secondly, we assume that S ∈ PSL(2,Z) and S(z) = az+b
cz+d . Then

1. Glide reflection if a + d , with two fixed points on the real axis.
2. Reflection if a + d = 0 with hyperbolic line perpendicular to R.

Definition 1.6. [11] A non-Euclidean crystallographic (written N. E. C.) group is a discrete subgroup of G.

Theorem 1.7. [5] Finite-order elements different from the unit of G are either elliptic or reflection transformations.

Definition 1.8. [9] We suppose that Λ is a NEC group and x ∈ R ∪ {∞}. In this case, if there is a parabolic element
1 ∈ Λ such that 1(x) = x, then x is called ”cusp point (cusp representative)”. Hence, the expression of Λx which it is
orbit Λ of x is called cusp and denoted by [x]. Moreover, if there is a reflection S ∈ Λ such that S([x]) = [x], then [x]
is called ”real cusp”.

Remark 1.9. Throughout this article we will study at finite generated NEC group Λ provided that the orbital space
H∗/Λ is compact. Here, H∗ = H ∪ B, and B :=

{
[x] : x ∈ R∞

}
.

Remark 1.10. We can write the following table for generators and relations of NEC group Λ [8],[11]

Table 2.1 : Generators and relations of NEC group Λ

xi ; i = 1, . . . , r
ei ; i = 1, . . . , k

Generators ci j ; i = 1, . . . , k and j = 0, 1, . . . , si
ai, bi ; i = 1, . . . , 1 (I. kind)
di ; i = 1, . . . , 1 (II. kind)
xmi

i = 1 ; i = 1, . . . , r
cisi = e−1

i ci0ei ; i = 1, . . . , k
Relations c2

i, j−1 = c2
i j = (ci, j−1ci j)ni j = 1

x1 . . . xre1 . . . eka1b1a−1
1 b−1

1 . . . a1b1a−1
1 b−1
1 = 1 (I. kind)

x1 . . . xre1 . . . ekd2
1 . . . d

2
1 = 1 (II. kind)

Here, let N2 := {2, 3, . . .}. If mi ∈ N2, then xi is an elliptic element. If mi = ∞, then xi is a parabolic element. If
ni j ∈ N2, then the combination of the two reflections is an elliptical element. And if ni j = ∞, this combination is
either a parabolic element or a hyperbolic element. It is clear that the numbers mi,ni j ∈N2 ∪ {∞} are the order of the
direction-protecting elements of Λ.



E. Ünlüyol, A. Büyükkaragöz, / TJOS 5 (3), 268–279 270

Definition 1.11. [4] The representation

σ(Λ) = (1;±; [m1, . . . ,mr]; {(n11, . . . ,n1s1 ), . . . , (nk1, . . . ,nksk )})

is called a NEC signature of Λ for NEC group Λ given at Table 2.1. We say shortly σ(Λ) or signature of Λ. Moreover,
it is called some notions at the signature σ(Λ) as follow:
(1.) Number 1 ∈N in the signature is called genus of orbit space’sH∗�Λ. And it is topologically invariant of surface.
(2.) If orbit space H∗�Λ can be directable, then s1nσ(Λ) = ” + ” or indirectable, then s1nσ(Λ) = ” − ”.
(3.) For i = 1, 2, · · · , r, the numbers mi ∈N2 is called natural period of Λ.
(4.) For i = 1, 2, · · · , r, the numbers mi ∈N2 ∪ {∞} is called special period of Λ.
(5.) The set C = {C1,C2, · · · ,Ck} is called boundary component of Λ.
(6.) For i = 1, 2, · · · , k, the notion Ci = (ni1 ,ni2 , . . . ,nisi ) are called i-th boundary component of signature or i-th
periodic-cycles.
(7.) For i = 1, 2, · · · , k, the numbers ni1 ,ni2 , · · · ,nisi ∈N2 ∪ {∞} are called period of i-th boundary component or link
period of Λ.

Theorem 1.12. [5] (Extended Hoare-Uzzell Theorem) Let G be a NEC group with signature

σ(G) =
(
1;∓; [m1, · · · ,mr]; {(n11, · · · ,n1s1 ), · · · , (nk1, · · · ,nksk )}

)
and H a subgroup of finite index. Each fixed point of a reflection ci of the permutation representation of G on the
H-cosets gives a reflection in H.

Let ci, ci+1 be two reflections, with cici+1 having order ni ≤ ∞. Let yi = cici+1 have an orbit (cycle) of length ri.
Then: either

a) this orbit contains no fixed points of ci or ci+1 in which case there exists another orbit of the same length, and
these two together induce an ordinary period ni/ri.

or

b) this orbit contains two fixed points of ci and ci+1 (one fixed by each if ri is odd, two by one and one by the other
if ri is even): and there is a relation between two induced reflections as, ci vni/ri ci+1. Combining these relations
makes up period cycles with link periods ni/ri.

Lemma 1.13. [6] Let T,K be ∈ Γ̂0(N)

T =

(
r −k
s −t

)
and K =

(
x −m
y −n

)
∈ Γ̂

then,
r
s
≈

x
y
⇐⇒ ry − sx ≡ 0 mod N (ry − sx = ∓N).

Here the relation ”≈” is on Q̂ that Γ̂0(N) is a reduced Γ̂ invariant equivalence relation,

Γ0(N) :=
{ (

a b
c d

)
∈ PSL(2,Z) : c ≡ 0 mod N

}
, Γ̂0(N) :=

〈
Γ0(N), z→ −z

〉
,

X0(N) = H∗/Γ0(N) and X̂0(N) = H∗/Γ̂0(N).

Theorem 1.14. [1] Let the numbers N ∈ Z+ and r are divisor number of N. We can write the followings for the
group Γ̂0(N):

I. case: If N is odd, then the number of boundary component of X0(N) is 2r−1 and there are 2 cusps in each
boundary component.

II. case: a) Let 2||N.
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i) If N = 2, then there is only one boundary component. And there are 2 cusps belonging to it.
ii) If N = 2m, m > 1, then there are 2r−2 boundary component. And there are 4 cusps belonging to each boundary

components.
b) Let 22

||N.
i) If N = 4, then there is only one boundary component. And there are 3 cusps belonging to it.
ii) If N > 4, then there are 2r−2 boundary component. And there are 6 cusps belonging to each boundary

components.
c) If 23

|N, then the number of boundary component are 2r−1. And there are 4 cusps in each boundary component.

2. Main Results

2.1. Signature of the Extended Congruence Subgroup

Let we consider the following extended congruence subgroup for N ∈ Z+

Γ̂0(N) =
〈
Γ0(N), z→ −z

〉
= Γ0(N) ∪

(
1 0
0 −1

)
Γ0(N).

Thus, Γ̂∞ < Γ̂0(N) < Γ̂. If we take u =
r
s
, v =

x
y
∈ Q̂, then there are T,K ∈ Γ̂ such that T(∞) = u and K(∞) = v

T =

(
r −k
s −t

)
and K =

(
x −m
y −n

)
.

Now we consider the special subgroup of Γ̂0(N) for N ∈ Z+, namely,

Γ̂0,n(N) =
〈
Γ0,n(N), z→ −z

〉
= Γ0,n(N) ∪

(
1 0
0 −1

)
Γ0,n(N).

Let we calculate in the signature of the group

Γ̂0,n(N) =
{ ( a b

cN d

)
∈ Γ̂0(N) : a ≡ ∓d mod n

}
.

And also let we determine the orbit space Y0(N) = H∗�Γ0,n(N) and Ŷ0(N) = H∗�Γ̂0,n(N) for Γ0,n(N) and
Γ̂0,n(N), respectively.

Theorem 2.1. Let Γ̂ be an extended modular group and(
a b
c d

)
∈ Γ̂, c1 =

(
1 0
0 −1

)
, c2 =

(
0 1
1 0

)
, c3 =

(
1 1
0 −1

)
.

Then,

a.) c1 leaves fixed to Γ̂0,n(N)
(

a b
c d

)
⇐⇒ N|2cd and (ad + bc)2

≡ 1 mod n,

b.) c2 leaves fixed to Γ̂0,n(N)
(

a b
c d

)
⇐⇒ N|d2

− c2 and (bd − ac)2
≡ 1 mod n,

c.) c3 leaves fixed to Γ̂0,n(N)
(

a b
c d

)
⇐⇒ N|2cd − c2 and (ad − ac + bc)2

≡ 1 mod n.

Proof. Let
(

a b
c d

)
∈ Γ̂ and Γ̂ = PSL(2,Z) ∪ PSL(2,Z).
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a)

Γ̂0,n(N)
(

a b
c d

)
c1 = Γ̂0,n(N)

(
a b
c d

)
⇐⇒

(
a b
c d

) (
1 0
0 −1

) (
d −b
−c a

)
∈ Γ̂0,n(N)

⇐⇒

(
a −b
c −d

) (
d −b
−c a

)
∈ Γ̂0,n(N)

⇐⇒

(
ad + bc −2ab

2cd −bc − ad

)
∈ Γ̂0,n(N)

⇐⇒ N|2cd and (ad + bc)2
≡ 1 mod n.

b)

Γ̂0,n(N)
(

a b
c d

)
c2 = Γ̂0,n(N)

(
a b
c d

)
⇐⇒

(
b a
d c

) (
0 1
1 0

) (
d −b
−c a

)
∈ Γ̂0,n(N)

⇐⇒

(
a b
c d

) (
d −b
−c a

)
∈ Γ̂0,n(N)

⇐⇒

(
bd − ac a2

− b2

d2
− c2 ac − bd

)
∈ Γ̂0,n(N)

⇐⇒ N|d2
− c2 and (bd − ac)2

≡ 1 mod n.

c)

Γ̂0,n(N)
(

a b
c d

)
c3 = Γ̂0,n(N)

(
a b
c d

)
⇐⇒

(
a b
c d

) (
1 1
0 −1

) (
d −b
−c a

)
∈ Γ̂0,n(N)

⇐⇒

(
a a − b
c c − d

) (
d −b
−c a

)
∈ Γ̂0,n(N)

⇐⇒

(
ad − ac + bc a2

− 2ab
2cd − c2

−bc + ac − ad

)
∈ Γ̂0,n(N)

⇐⇒ N|2cd − c2 and (ad − ac + bc)2
≡ 1 mod n.

So, the proof is completed.

Lemma 2.2. Elliptic and parabolic elements generated with reflections of c1, c2, c3 in Γ̂ are determined as follows:

a.) T1 =

(
0 1
−1 0

)
,T2 =

(
0 −1
1 1

)
,T3 =

(
1 1
0 1

)
and T2

1 = T3
2 = T∞3 = I.

b.) T4 =

(
0 −1
1 0

)
,T5 =

(
1 1
−1 0

)
,T6 =

(
1 −1
0 1

)
and T2

4 = T3
5 = T∞6 = I.

Proof. We know

c1 =

(
1 0
0 −1

)
, c2 =

(
0 1
1 0

)
, c3 =

(
1 1
0 −1

)
, (c1c2)2 = (c2c3)3 = (c1c3)∞ = I.

Then,

a) T1 = c1c2 =

(
1 0
0 −1

) (
0 1
1 0

)
=

(
0 1
−1 0

)
T2 = c2c3 =

(
0 1
1 0

) (
1 1
0 −1

)
=

(
0 −1
1 1

)
T3 = c1c3 =

(
1 0
0 −1

) (
1 1
0 −1

)
=

(
1 1
0 1

)
.
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In this case, we obtain the relation T2
1 = T3

2 = T∞3 = I. Then,

b) T4 = c2c1 =

(
0 1
1 0

) (
1 0
0 −1

)
=

(
0 −1
1 0

)

T5 = c3c2 =

(
1 1
0 −1

) (
0 1
1 0

)
=

(
1 1
−1 0

)

T6 = c3c1 =

(
1 1
0 −1

) (
1 0
0 −1

)
=

(
1 −1
0 1

)
So, we have T2

4 = T3
5 = T∞6 = I.

Remark 2.3. The combinations of these transformations can also be used.

(c2c3)2 =

(
1 1
−1 0

)
and (c3c1)k =

(
1 −k
−1 1

)
Lemma 2.4. [1] ad ≡ 1 mod s provides a ≡ d mod s if and only if s is the integer divisor of 24.

Proof. ”=⇒”: Let ad ≡ 1 mod s provides the congruence a ≡ d mod s and Us := {a ∈ Zs | (a, s) = 1}. Here,
a2
≡ 1 mod s reduces to finding s for each a ∈ Us that satisfies the congruence. In this case, we assume that

s = 2α.3βqα1
1 . . . qαk

k , (qi ∈ P, qi , 2, qi , 3). So, we have Us � U2α × U3β × Uqα1
1
× . . . × Uq

αk
k

. If p is odd prime

number and n ≥ 1, then Upn is cyclic. The order of these groups are ϕ(3β), ϕ(qα1
1 ), . . . , ϕ(qαk

k ), respectively.
Here ϕ is an Euler function. Because each of these groups has two members with an order of 2. So β should
be 1, and qαi

i does not exist. Thus, it is determined as s = 2α3β, either β = 0 or β = 1. On the other hand,
if α ≥ 3, then U2α := {∓5t : 0 ≤ t ≤ 2α−2

}. Here, mth order of 5 is exactly 2α−2. If α > 3, then m will be at
least 4. But it is a contradiction because each elements of U2α have got 2nd order. So it should be α ≤ 3.
Consequently, we obtain s|24.

”⇐=”: Let ad ≡ 1 mod s and s|24. In this case, due to ϕ(24) = 8 we determine the integer a and d such
that a, d ∈ {1, 5, 7, 11, 13, 17, 19, 23}. That is, the counting number less than 24 and prime between 24 is 8,
and let’s make the selection according to the cluster above. In this case, we get a2

≡ d2
≡ 1 mod s. Thus, we

obtain a ≡ d mod s.

α = 1 =⇒ U21 := {a ∈ Z2 : (a, 2) = 1} = {1} and a2
≡ 1 mod 2,

α = 2 =⇒ U22 := {a ∈ Z4 : (a, 4) = 1} = {1, 3} and a2
≡ 1 mod 4,

α = 3 =⇒ U23 := {a ∈ Z8 : (a, 8) = 1} = {1, 3, 5, 7} and a2
≡ 1 mod 8,

α = 4 =⇒ U24 := {a ∈ Z16 : (a, 16) = 1} = {1, 3, 5, 7, 9, 11, 13, 15} and a2
≡ 1 mod 16.

Now, the order U16 is 4, but it does not. Namely, counting number α and β exist such that 0 ≤ β ≤ 1 for
s = 2α3β.

Theorem 2.5. Let n,N ∈ Z+ and n|N. Then,
a) n|24⇐⇒ Γ0,n(N) = Γ0(N),
b) n|24⇐⇒ Γ̂0,n(N) = Γ̂0(N).

Proof. a) ”=⇒ :” Let n|24. Thus, ∃k ∈ Z such that 24 = nk. It is clear that Γ0,n(N) ⊂ Γ0(N) from Γ0,n(N) ≤ Γ0(N).
Now let we show Γ0(N) ⊂ Γ0,n(N).

We take T =

(
a b
cN d

)
∈ Γ0(N). In this case, we have detT = ad − bcN = 1 and ad ≡ 1 mod n. We obtain

a ≡ d mod n from Lemma 2.4 for n|24 and ad ≡ 1 mod n. That is, a2
≡ 1 mod n and thus T ∈ Γ0,n(N).
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”⇐=” Let Γ0,n(N) = Γ0(N). We take
(

a b
cN d

)
∈ Γ0,n(N) = Γ0(N). From this ad − bcN = 1 and we obtain

ad ≡ 1 mod N. Thus, ad ≡ 1 mod n from n|N. Furthermore, it should be a ≡ d mod n from T ∈ Γ0,n(N) and
n|24 from Lemma 2.4.

b) The proof is clear according to case of a) from Γ̂0,n(N) = Γ0,n(N) ∪ RΓ0,n(N) and R(z) = −z̄ for Γ0,n(N).
Now we prove for RΓ0,n(N).

”=⇒” : Let n|24, and T =

(
1 0
0 −1

) (
a b

cN d

)
∈ RΓ0,n(N) . Thus,

(
a b
−cN −d

)
∈ RΓ0,n(N) and

−ad + bcN = −1. If we use −ad ≡ −1 mod n and n|24 with Lemma 2.4, then a ≡ d mod n.

”⇐=” Let Γ̂0,n(N) = Γ̂0(N) and
(

1 0
0 −1

) (
a b

cN d

)
∈ RΓ0,n(N). In this case, −ad + bcN = −1 and

a ≡ d mod n. So, we also obtain −ad ≡ −1 mod n and a ≡ d mod n. And we have the same result n|24 from
Lemma 2.4.

2.2. Boundary Components in the Signature

Theorem 2.6. Let p ∈ P. Then, it can be given for the boundary components in the signature of the group Γ̂0,p(p) as
follows:
a) If p = 2, then the group’s signature has one boundary component and there is one 2 valued link period and two
cusp in this component.
b) If p = 3, then the group’s signature has one boundary component and there is one 3 valued link period and two
cusp in this component.
c) If p = 5, then the group’s signature has one boundary component and there are two cusp in this component.

Proof. a) Let N = p = 2. Then from Theorem 2.5, we have Γ̂0,2(2) = Γ̂0(2), and instead of the second terms of
Theorem 2.1, only the first conditions can be examined.

c1 reflection leaves fixed to the elements
(
∗ ∗

0 1

)
,

(
∗ ∗

1 0

)
,

(
∗ ∗

1 1

)
,

c2 reflection leaves fixed to the elements
(
∗ ∗

1 1

)
,

c3 reflection leaves fixed to the elements
(
∗ ∗

0 1

)
.

The chain T1 is below from Theorem 1.14 and Lemma 2.2 for boundary components;

c1
(
∗ ∗

1 0

)
1
∼

c1
(
∗ ∗

0 1

)
∞

∼

c1
(
∗ ∗

1 1

)
2
∼

c2
(
∗ ∗

1 1

)
1
∼

c3
(
∗ ∗

0 1

)
∞

∼

c3
(
∗ ∗

0 1

)
1
∼

c1
(
∗ ∗

1 0

)
.

So, there is a boundary component in the group’s signature. There is a 2-valued link period in the signature.
And there are also two cusps in it.

b) Let N = p = 3. From Theorem 2.5 we have Γ̂0,3(3) = Γ̂0(3). And thus instead of the second terms of
Theorem 2.1, only the first conditions can be examined.

c1 reflection leaves fixed to the elements
(
∗ ∗

0 1

)
and

(
∗ ∗

1 0

)
,

c2 reflection leaves fixed to the elements
(
∗ ∗

1 1

)
and

(
∗ ∗

2 1

)
,
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c3 reflection leaves fixed to the elements
(
∗ ∗

0 1

)
and

(
∗ ∗

2 1

)
.

The chain T2 is below from Theorem 1.14 and Lemma 2.2 for boundary components;

c1
(
∗ ∗

0 1

)
1
∼

c1
(
∗ ∗

1 0

)
∞

∼

c3
(
∗ ∗

2 1

)
3
∼

c2
(
∗ ∗

2 1

)
1
∼

c2
(
∗ ∗

1 1

)
1
∼

c3
(
∗ ∗

0 1

)
∞

∼

c1
(
∗ ∗

0 1

)
.

So, there is a boundary component in the group’s signature. There is a 3-valued link period in the boundary
component. And there are also two cusps in the boundary component.

c) Let we research the group Γ̂0,5(5) for N = p = 5.

i) The reflection c1 leaves fixed to Γ̂0,5(5)
(

a b
5c d

)
and Γ̂0,5(5)

(
a b
c 5d

)
. Here the condition of Theorem

2.1-a) satisfies. Indeed, we have N|5cd and (ad + 5bc)2
≡ 1 mod 5 due to ad − 5bc = ±1. And then we get

(5ad + bc)2
≡ 1 mod 5.

(ad)2
≡ 1 mod 5 =⇒ ad ≡ ±1 mod 5 =⇒


a = 1 and d = 1; 4
a = 2 and d = 2; 3
a = 3 and d = 2; 3
a = 4 and d = 1; 4

So, a ≡ −d mod 5. Similarly, the same situation occurs with (bc)2
≡ 1 mod 5. Thus, the reflection c1 leaves

fixed to Γ̂0,5(5)
(
±1 k

0 1

)
and Γ̂0,5(5)

(
k ±1
1 0

)
. So, we have

(
a b
5c d

) (
∓1 k

0 1

)−1

=

(
a b
5c d

) (
1 −k
0 ±1

)
=

(
a −ak ∓ b
5c −5kc ∓ d

)
∈ Γ̂0,5(5)

and (
a b
c 5d

) (
k ∓1
1 0

)−1

=

(
a b
c 5d

) (
0 ±1
−1 k

)
=

(
−b ∓a + bk
−5d ∓c + 5kd

)
∈ Γ̂0,5(5).

In this case, the reflection c1 leaves fixed to Γ̂0,5(5)
(

a b
5c d

)
and Γ̂0,5(5)

(
a b
c 5d

)
.Moreover, these elements

Γ̂0,5(5)
(
±1 k
0 1

)
and Γ̂0,5(5)

(
k ±1
1 0

)
are in the same coset class. Thus, the reflection c1 without breaking

generality leaves fixed to
(
∗ ∗

0 1

)
and

(
∗ ∗

1 0

)
.

ii) From Theorem 2.1, the reflection c2 leaves fixed to

Γ̂0,5(5)
(

a b
c d

)
⇐⇒

{
5| d2
− c2

(bc − ad)2
≡ 1 mod 5.

From this, we have 5|(d − c)(d + c). And 5|d − c or 5|d + c. Therefore d − c ≡ 0 mod 5 or d + c ≡ 0 mod 5.
According to this, we can take either c = d = 1 or c = −1, d = 1.

The reflection c2 leaves fixed to Γ̂0,5(5)
(

a b
1 1

)
and Γ̂0,5(5)

(
a b
−1 1

)
. So,

(
a b
1 1

) (
k t
1 1

)−1

=

(
a b
1 1

) (
1 −t
−1 k

)
=

(
a − b −at + bk
0 k − t

)
∈ Γ̂0,5(5)
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and (
a b
−1 1

) (
k t
−1 1

)−1

=

(
a b
−1 1

) (
1 −t
1 k

)
=

(
a + b −at + bk

0 t + k

)
∈ Γ̂0,5(5).

Hence the reflection c2 leaves fixed to
(
∗ ∗

1 1

)
and

(
∗ ∗

−1 1

)
.

iii) From Theorem 2.1, the reflection c3 leaves fixed to

Γ̂0,5(5)
(

a b
c d

)
⇐⇒

{
5|2cd − c2

(ad − ac + bc)2
≡ 1 mod 5.

Here, there are two important conditions. Hence, it can be taken either c = 0, d = 1 or c = 2, d = 1.

The reflection c3 leaves fixed to Γ̂0,5(5)
(

a b
0 1

)
and Γ̂0,5(5)

(
a b
2 1

)
. In this case, we have

(
a b
0 1

) (
k t
0 1

)−1

=

(
a b
0 1

) (
1 −t
0 k

)
=

(
a −at + bk
0 k

)
∈ Γ̂0,5(5)

and (
a b
2 1

) (
k t
2 1

)−1

=

(
a b
2 1

) (
1 −t
−2 k

)
=

(
a − 2b −at + bk

0 −2t + k

)
∈ Γ̂0,5(5).

So, the reflection c3 leaves fixed to
(
∗ ∗

0 1

)
and

(
∗ ∗

2 1

)
. The chainT3 is below from the conditions i), ii), iii)

with Theorem 1.14 and Lemma 2.2;
c1
(
∗ ∗

0 1

)
1
∼

c1
(
∗ ∗

1 0

)
∞

∼

c3
(
∗ ∗

2 1

)
1
∼

c2
(
∗ ∗

2 1

)
1
∼

c2
(
∗ ∗

−1 1

)
∞

∼

c3
(
∗ ∗

0 1

)
.

Hence, there is a boundary component in the signature. There are two∞-valued link period in the boundary
component.

Corollary 2.7. We obtain the following results:
a) For the signature of Γ̂0,1(1) = Γ̂0(1); C = {(2, 3,∞)},
b) For the signature of Γ̂0,2(2); C = {(∞, 2,∞)},
c) For the signature of Γ̂0,3(3); C = {(∞, 3,∞)},
d) For the signature of Γ̂0,5(5); C = {(∞,∞)}.

Theorem 2.8. Let p ∈ P. Then we can give the follows for the signature of the group Γ̂0,p(p2) in the boundary
component,

a) If p = 2, then there is a boundary component in the signature and there are 3 cusp in the boundary component.
b) If p = 3, then there is a boundary component in the signature and there are 2 cusp in the boundary component.
c) If p = 5, then there is a boundary component in the signature and there are 2 cusp in the boundary component.

Proof. a) Let n = p = 2 and N = 22. Then Γ̂0,2(4) = Γ̂0(4) from Theorem 2.5, and hence instead of the second
terms of Theorem 2.1, only the first conditions can be examined.

The reflection c1 leaves fixed to the elements
(
∗ ∗

0 1

)
,

(
∗ ∗

1 0

)
,

(
∗ ∗

2 1

)
,

(
∗ ∗

1 2

)
,

The reflection c2 leaves fixed to the elements
(
∗ ∗

−1 1

)
,

(
∗ ∗

1 1

)
,

The reflection c3 leaves fixed to the elements
(
∗ ∗

0 1

)
,

(
∗ ∗

2 1

)
.
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So, the chain T4 is below from Theorem 1.14 and Lemma 2.2

c1
(
∗ ∗

0 1

)
1
∼

c1
(
∗ ∗

1 0

)
∞

∼

c1
(
∗ ∗

1 2

)
1
∼

c1
(
∗ ∗

2 1

)
∞

∼

c3
(
∗ ∗

2 1

)
1
∼

c2
(
∗ ∗

−1 1

)
1
∼

c2
(
∗ ∗

1 1

)
1
∼

c3
(
∗ ∗

0 1

)
∞

∼

c1
(
∗ ∗

0 1

)
.

Hence, there is a boundary component in the group’s signature, and there are 3 cusps in the boundary
component.

b) Let n = p = 3 and N = 32. we have Γ̂0,3(9) = Γ̂0(9) from Theorem 2.5, and instead of the second terms
of Theorem 2.1, only the first conditions can be examined.

The reflection c1 leaves fixed to the elements
(
∗ ∗

1 0

) (
∗ ∗

0 1

)
,

the reflection c2 leaves fixed to the elements
(
∗ ∗

1 1

)
,

(
∗ ∗

−1 1

)
,

the reflection c3 leaves fixed to the elements
(
∗ ∗

0 1

)
,

(
∗ ∗

2 1

)
.

The chain T5 is below from Theorem 1.14 and Lemma 2.2

c1
(
∗ ∗

0 1

)
1
∼

c1
(
∗ ∗

1 0

)
∞

∼

c3
(
∗ ∗

2 1

)
1
∼

c2
(
∗ ∗

2 1

)
1
∼

c2
(
∗ ∗

−1 1

)
∞

∼

c1
(
∗ ∗

0 1

)
.

Hence there is a boundary component, and there are 2 cusps in the boundary component.
c) Let n = p = 5 and N = 52. Now we research the group Γ̂0,5(25).
i) According to Theorem 2.1,

The reflection c1 leaves fixed to Γ̂0,5(52)
(

a b
c d

)
⇐⇒

{
25|2cd
(ad + bc)2

≡ 1 mod 5.

In this case, the reflection c1 leaves fixed to Γ̂0,5(25)
(

a b
25c d

)
and Γ̂0,5(25)

(
a b
c 25d

)
. Here, it satisfies

Theorem 2.1-a). Indeed, firstly we have N|25cd and (ad + 25bc)2
≡ 1 mod 5 from N = 25 and ad − 25bc = ±1.

Secondly, we have N|25cd and (25ad + bc)2
≡ 1 mod 5 from N = 25 and 25ad − bc = ±1. Hence the reflection

c1 leaves fixed to Γ̂0,5(25)
(
∓1 k
0 1

)
and Γ̂0,5(25)

(
k ∓1
1 0

)
. In this case, we obtain

(
a b

25c d

) (
∓1 k
0 1

)−1

=

(
a b

25c d

) (
1 −k
0 ∓1

)
=

(
a −ak ∓ b

25c −25kc ∓ d

)
∈ Γ̂0,5(25)

and (
a b
c 25d

) (
k ∓1
1 0

)−1

=

(
a b
c 25d

) (
0 ∓1
−1 k

)
=

(
−b ∓a + bk
−25d ∓c + 25kd

)
∈ Γ̂0,5(25).
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From this, the reflection c1 leaves fixed to Γ̂0,5(25)
(

a b
25c d

)
and Γ̂0,5(25)

(
a b

c 25d

)
. So, these elements

and Γ̂0,5(25)
(
∓1 k
0 1

)
and Γ̂0,5(25)

(
k ∓1
1 0

)
elements are in the same coset class. Therefore, the reflection

c1 leaves fixed to
(
∗ ∗

0 1

)
and

(
∗ ∗

1 0

)
.

ii) According to Theorem 2.1, the reflection c2 leaves fixed to Γ̂0,5(25)
(

a b
c d

)
⇐⇒

{
25|d2

− c2

(bd − ac)2
≡ 1 mod 5.

From this, 25|d2
− c2 =⇒ 5|(d− c)(d + c) =⇒ if and only if 5|d− c or only 5|d + c. So, we obtain d− c ≡ 0 mod 52

or d + c ≡ 0 mod 52. Hence we can take either c = d = 1 or c = −1, d = 1.

The reflection c2 leaves fixed to Γ̂0,5(25)
(

a b
1 1

)
. Because of 25|12

− 12 and (a1 − b1)2
≡ 1 mod 5, it satisfies

Theorem 2.1. Then, the reflection c2 leaves fixed to Γ̂0,5(25)
(

a b
−1 1

)
. In this case, we have

(
a b
1 1

) (
k t
1 1

)−1

=

(
a b
1 1

) (
1 −t
−1 k

)
=

(
a − b −at + bk

0 k − t

)
∈ Γ̂0,5(25)

and (
a b
−1 1

) (
k t
1 −1

)−1

=

(
a b
−1 1

) (
−1 −t
−1 k

)
=

(
−a − b −at + bk

0 k + t

)
∈ Γ̂0,5(25).

Hence, the reflection c2 leaves fixed to Γ̂0,5(25)
(

a b
1 1

)
and Γ̂0,5(25)

(
a b
−1 1

)
. These elements Γ̂0,5(25)

(
k t
1 1

)
and Γ̂0,5(25)

(
k t
−1 1

)
are in the same coset. Thus, the reflection c2 leaves fixed to

(
∗ ∗

1 1

)
and

(
∗ ∗

−1 1

)
.

iii) According to Theorem 2.1 the reflection c3 leaves fixed to

Γ̂0,5(25)
(

a b
c d

)
⇐⇒

{
25|2cd − c2

(ad − ac + bc)2
≡ 1 mod 5.

In this case, there are either c = 0, d = 1 or c = 2, d = 1.

The reflection c3 leaves fixed to Γ̂0,5(25)
(

a b
0 1

)
and Γ̂0,5(25)

(
a b
2 1

)
. These elements satisfy the

condition of Theorem 2.1-c). Thereby, we get(
a b
0 1

) (
k t
0 1

)−1

=

(
a b
0 1

) (
1 −t
0 k

)
=

(
a −at + bk
0 k

)
∈ Γ̂0,5(25)

and (
a b
2 1

) (
k t
2 1

)−1

=

(
a b
2 1

) (
1 −t
−2 k

)
=

(
a − 2b −at + bk

0 −2t + k

)
∈ Γ̂0,5(25).

And these elements are also in the same coset. From this the reflection c3 leaves fixed to
(
∗ ∗

0 1

)
and(

∗ ∗

2 1

)
. Hence, the chain T6 is below from Theorem 1.14 and Lemma 2.2

c1
(
∗ ∗

0 1

)
1
∼

c1
(
∗ ∗

1 0

)
∞

∼

c3
(
∗ ∗

2 1

)
1
∼

c2
(
∗ ∗

2 1

)
1
∼

c2
(
∗ ∗

−1 1

)
∞

∼

c1
(
∗ ∗

0 1

)
.

Consequently, there is a boundary component in the group’ s signature, and there are 2 cusps in the
boundary component.
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Corollary 2.9. We obtain the following results:
a) For the signature of Γ̂0,2(4); C = {(∞,∞,∞)},
b) For the signature of Γ̂0,3(9); C = {(∞,∞)},
c) For the signature of Γ̂0,5(25); C = {(∞,∞)}.

Corollary 2.10. There are not 2 and 3-valued link periods in the signature of the group Γ̂0,5(5α) for α ∈ Z and α ≥ 1.
Then there is only one boundary component and there are two cusps in the group’ s signature. Namely, the set of
boundary component is C = {(∞,∞)}.

3. Conclusions

Considering the investigations done so far, we can get more general results as in the Table 3.1 by using
Theorem 2.5 as we did before, based on Theorem 1.14

It should be noted that there are no 2 and 3-valued link periods except the groups Γ̂, Γ̂0,2(2), Γ̂0,3(3). In
all other cases there is a ∞-valued link period. These ∞-valued link periods appear to be associated with
parabolic transformations and even with fixed points they left constant.

Table 3.1 : Boundary components of the signatures of the some groups Γ̂0,n(N)

The Group Name The set of boundary component in the signature
Γ̂0,4(4) {(∞,∞,∞)}
Γ̂0,4(8) {(∞,∞,∞,∞)}
Γ̂0,4(16) {(∞,∞,∞,∞)}
Γ̂0,4(24) {(∞,∞,∞,∞), (∞,∞,∞,∞)}
Γ̂0,2(6) {(∞,∞,∞,∞)}
Γ̂0,6(6) {(∞,∞,∞,∞)}
Γ̂0,6(12) {(∞,∞,∞,∞,∞,∞)}
Γ̂0,6(18) {(∞,∞,∞,∞)}
Γ̂0,6(24) {(∞,∞,∞,∞), (∞,∞,∞,∞)}
Γ̂0,8(8) {(∞,∞,∞,∞)}
Γ̂0,8(16) {(∞,∞,∞,∞)}
Γ̂0,8(24) {(∞,∞,∞,∞)}
Γ̂0,12(12) {(∞,∞,∞,∞,∞,∞)}
Γ̂0,12(24) {(∞,∞,∞,∞), (∞,∞,∞,∞)}
Γ̂0,24(24) {(∞,∞,∞,∞), (∞,∞,∞,∞)}

References
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