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bAğrı İbrahim Çeçen University, Faculty of Science and Letters, Department of Mathematics, AĞRI TURKEY
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Abstract. The main purpose of this study is to prove new integral inequalities for product of different
classes of convex functions via some classical inequalities such as general Cauchy inequality and reverse
Minkowski inequality.

1. INTRODUCTION

The function f : [a, b]→ R, is said to be convex, if we have

f
(
tx + (1 − t) y

)
≤ t f (x) + (1 − t) f

(
y
)

for all x, y ∈ [a, b] and t ∈ [0, 1] . This definition is well-known in the literature and a huge amount of the
researchers interested in this definition. We can define starshaped functions on [0, b] which satisfy the
condition

f (tx) ≤ t f (x)

for t ∈ [0, 1] .
Because of the importance of convex functions in inequality theory, integral inequalities including

convex function classes have an important place in the literature of mathematical inequalities. Especially
in recent years, many researchers have done many studies in this field. Interested readers can find different
aspects of this subjects in references.

The concept of m−convexity has been introduced by Toader in [5], an intermediate between the ordinary
convexity and starshaped property, as following:

Definition 1.1. The function f : [0, b]→ R, b > 0, is said to be m−convex, where m ∈ [0, 1] , if we have

f
(
tx + m (1 − t) y

)
≤ t f (x) + m (1 − t) f

(
y
)

for all x, y ∈ [0, b] and t ∈ [0, 1] . We say that f is m−concave if − f is m−convex.
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Several papers have been written on m−convex functions and we refer the papers [1], [2], [3], [7], [8]
and [9].

In [4], Miheşan gave definition of (α,m)−convexity as following;

Definition 1.2. The function f : [0, b]→ R, b > 0 is said to be (α,m)−convex, where (α,m) ∈ [0, 1]2, if we have

f (tx + m(1 − t)y) ≤ tα f (x) + m(1 − tα) f (y)

for all x, y ∈ [0, b] and t ∈ [0, 1].

Denote by Kα
m(b) the class of all (α,m)−convex functions on [0, b] for which f (0) ≤ 0. If we choose

(α,m) = (1,m), it can be easily seen that (α,m)−convexity reduces to m−convexity and for (α,m) = (1, 1), we
have ordinary convex functions on [0, b]. In [6], Set et al. proved some inequalities related to (α,m)−convex
functions.

The following inequality which well known in the literature as Minkowski inequality is given as;

Let p ≥ 1, 0 <
b∫

a
f (x)pdx < ∞, and 0 <

b∫
a
1(x)pdx < ∞. Then


b∫

a

(
f (x) + 1(x)

)p dx


1
p

≤


b∫

a

f (x)pdx


1
p

+


b∫

a

1(x)pdx


1
p

. (1)

The reverse of this inequality was given by Bougoffa in [16], as the following;

Theorem 1.3. Let f and 1 be positive functions satisfying

0 < m ≤
f (x)
1(x)

≤M, ∀x [a, b] .

Then 
b∫

a

f (x)pdx


1
p

+


b∫

a

1(x)pdx


1
p

≤ c


b∫

a

(
f (x) + 1(x)

)p dx


1
p

. (2)

where c =
M(m+1)+(M+1)

(m+1)(M+1) .

Definition 1.4. [See [10]] Let s ∈ (0, 1] . A function f : [0,∞) → [0,∞) is said to be an s−convex function in the
second sense if

f
(
tx + (1 − t) y

)
≤ ts f (x) + (1 − t)s f

(
y
)

(3)

for all x, y ∈ R+ and t ∈ [0, 1] .

In [11], s−convexity introduced by Breckner as a generalization of convex functions. Also, Breckner
proved the fact that the set valued map is s−convex only if the associated support function is s−convex
function in [12]. Several properties of s−convexity in the first sense are discussed in the paper [10].
Obviously, s−convexity means just convexity when s = 1.

Theorem 1.5. [See [14]] Suppose that f : [0,∞) → [0,∞) is an s−convex function in the second sense, where
s ∈ (0, 1] and let a, b ∈ [0,∞) , a < b. If f ∈ L1 [0, 1] , then the following inequalities hold:

2s−1 f
(

a + b
2

)
≤

1
b − a

∫ b

a
f (x) dx ≤

f (a) + f (b)
s + 1

. (4)

The constant k = 1
s+1 is the best possible in the second inequality in (4). The above inequalities are sharp.
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Some new Hermite-Hadamard type inequalities based on concavity and s−convexity established by
Kırmacı et al. in [15]. For related results see the papers [13], [14] and [15].

This paper organized as follows.
In Section 2, we prove some inequalities for m−convex and s−convex functions and in Section 3, we

give some new inequalities for (α,m)−convex functions by using some classical inequalities and fairly
elementary analysis.

2. RESULTS FOR m−CONVEX AND s−CONVEX FUNCTIONS

We will start with the following Theorem which is involving m−convex functions.

Theorem 2.1. Suppose that f , 1 : [a, b] → [0,∞) , 0 ≤ a < b < ∞, are m1−convex and m2−convex functions,
respectively, where m1,m2 ∈ (0, 1] . If f , 1 ∈ L1 [a, b] , then the following inequality holds:

1
b − a

b∫
a

f
x−a
b−a (x) 1

b−x
b−a (x) dx ≤

1
3

[
f (b) + m21

( a
m2

)]
+

1
6

[
1 (b) + m1 f

( a
m1

)]
. (5)

Proof. From m1−convexity and m2−convexity of f and 1, we can write

f t (tb + (1 − t) a) ≤
[
t f (b) + m1 (1 − t) f

( a
m1

)]t

and

1(1−t) (tb + (1 − t) a) ≤
[
t1 (b) + m2 (1 − t) 1

( a
m2

)](1−t)
.

Since f , 1 are non-negative, we have

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a) (6)

≤

[
t f (b) + m1 (1 − t) f

( a
m1

)]t [
t1 (b) + m2 (1 − t) 1

( a
m2

)](1−t)
.

Recall the General Cauchy Inequality (see [17], Theorem 3.1), let α and β be positive real numbers satisfying
α + β = 1. Then for every positive real numbers x and y, we always have

αx + βy ≥ xαyβ.

By using the General Cauchy Inequality in (6), we get

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a)

≤ t
[
t f (b) + m1 (1 − t) f

( a
m1

)]
+ (1 − t)

[
t1 (b) + m2 (1 − t) 1

( a
m2

)]
.

By integrating with respect to t over [0, 1] , we have

1∫
0

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a) dt

≤
1
3

[
f (b) + m21

( a
m2

)]
+

1
6

[
1 (b) + m1 f

( a
m1

)]
.

Hence, by taking into account the change of the variable tb + (1 − t) a = x, (b − a)dt = dx, we obtain the
required result.
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Corollary 2.2. If we choose m1 = m2 = 1 in Theorem 3, we have the inequality;

1
b − a

b∫
a

f
x−a
b−a (x) 1

b−x
b−a (x) dx ≤

1
3
[

f (b) + 1 (a)
]
+

1
6
[
1 (b) + f (a)

]
.

Another result for m−convex functions is emboided in the following Theorem.

Theorem 2.3. Suppose that f , 1 : [0, b]→ R, b > 0, are m1−convex and m2−convex functions, respectively, where
m1,m2 ∈ (0, 1] . If f ∈ L1 [a, b] , then the following inequality holds:

1 (b)

(b − a)2

b∫
a

(x − a) f (x) dx + m2

1
(

a
m2

)
(b − a)2

b∫
a

(b − x) f (x) dx (7)

+
f (b)

(b − a)2

b∫
a

(x − a)1 (x) dx + m1

f
(

a
m1

)
(b − a)2

b∫
a

(b − x)1 (x) dx

≤
1

b − a

b∫
a

f (x) 1 (x) dx +
1
3

f (b) 1 (b) +
m1

6
f
( a

m1

)
1 (b)

+
m2

6
f (b) 1

( a
m2

)
+

m1m2

3
f
( a

m1

)
1

( a
m2

)
.

Proof. Since f and 1 are m1−convex and m2−convex functions, respectively, we can write

f (tb + (1 − t) a) ≤ t f (b) + m1 (1 − t) f
( a

m1

)
and

1 (tb + (1 − t) a) ≤ t1 (b) + m2 (1 − t) 1
( a

m2

)
.

By using the elementary inequality, e ≤ f and p ≤ r, then er + f p ≤ ep + f r for e, f , p, r ∈ R, then we get

f (tb + (1 − t) a)
[
t1 (b) + m2 (1 − t) 1

( a
m2

)]
+1 (tb + (1 − t) a)

[
t f (b) + m1 (1 − t) f

( a
m1

)]
≤ f (tb + (1 − t) a) 1 (tb + (1 − t) a)

+
[
t1 (b) + m2 (1 − t) 1

( a
m2

)] [
t f (b) + m1 (1 − t) f

( a
m1

)]
.

So, we obtain

t f (tb + (1 − t) a) 1 (b) + m2 (1 − t) f (tb + (1 − t) a) 1
( a

m2

)
+t f (b) 1 (tb + (1 − t) a) + m1 (1 − t) f

( a
m1

)
1 (tb + (1 − t) a)

≤ f (tb + (1 − t) a) 1 (tb + (1 − t) a) + t2 f (b) 1 (b) + m1t (1 − t) f
( a

m1

)
1 (b)

+m2t (1 − t) f (b) 1
( a

m2

)
+ m1m2 (1 − t)2 f

( a
m1

)
1

( a
m2

)
.

By integrating this inequality with respect to t over [0, 1] and by using the change of the variable tb+(1 − t) a =
x, (b − a)dt = dx, the proof is completed.
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Corollary 2.4. If we choose m1 = m2 = 1 in Theorem 4, we have the inequality;

1 (b)

(b − a)2

b∫
a

(x − a) f (x) dx +
1 (a)

(b − a)2

b∫
a

(b − x) f (x) dx

+
f (b)

(b − a)2

b∫
a

(x − a)1 (x) dx +
f (a)

(b − a)2

b∫
a

(b − x)1 (x) dx

≤
1

b − a

b∫
a

f (x) 1 (x) dx +
1
3

M(a, b) +
1
6

N(a, b).

Following inequality also holds for m−convex functions.

Theorem 2.5. Suppose that f , 1 : [a, b] → [0,∞) , 0 ≤ a < b < ∞, are m1−convex and m2−convex functions,
respectively, where m1,m2 ∈ (0, 1] . If f , 1 ∈ L1 [a, b] and f , 1 satisfy following condition

0 < m ≤
f (x)
1(x)

≤M, ∀x ∈ [a, b]

then the following inequality holds:

1
c




b∫
a

f (x)pdx


1
p

+


b∫

a

1(x)pdx


1
p


≤

(
2p−1 (b − a)

p + 1

) 1
p ([

f (b) + 1 (b)
]p
−

[
m1 f

( a
m1

)
+ m21

( a
m2

)]p) 1
p

where c =
M(m+1)+(M+1)

(m+1)(M+1) and p ≥ 1.

Proof. Since f and 1 are m1−convex and m2−convex functions, respectively, we can write

f (tb + (1 − t) a) ≤ t f (b) + m1 (1 − t) f
( a

m1

)
(8)

and
1 (tb + (1 − t) a) ≤ t1 (b) + m2 (1 − t) 1

( a
m2

)
. (9)

By adding (8) and (9), we get

f (tb + (1 − t) a) + 1 (tb + (1 − t) a) ≤ t f (b) + m1 (1 − t) f
( a

m1

)
+t1 (b) + m2 (1 − t) 1

( a
m2

)
. (10)

For p ≥ 1, taking p−th power of both sides of the inequality (10) and by using the elementary inequality,
(c + d)p

≤ 2p−1 (cp + dp) , then we get[
f (tb + (1 − t) a) + 1 (tb + (1 − t) a)

]p

≤ 2p−1
(
tp [

f (b) + 1 (b)
]p + (1 − t)p

[
m1 f

( a
m1

)
+ m21

( a
m2

)]p)
.
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Integrating with respect to t over [0, 1] and by using the change of the variable tb + (1 − t) a = x and
(b − a)dt = dx, we obtain

1
b − a

b∫
a

(
f (x) + 1(x)

)p dx ≤
2p−1

p + 1

([
f (b) + 1 (b)

]p
−

[
m1 f

( a
m1

)
+ m21

( a
m2

)]p)
. (11)

By taking 1
p−th power of both sides of the inequality (11) and by using the inequality (2), we get the desired

inequality. Which completes the proof.

We will give an inequality for s−convex functions in the following theorem. In the next theorem we will
also make use of the Beta function of Euler type, which is for x, y > 0 defined

as

β(x, y) =

1∫
0

tx−1(1 − t)y−1dt.

Theorem 2.6. Suppose that f , 1 : [0,∞) → [0,∞) are s1−convex and s2−convex functions, respectively, where
s1, s2 ∈ [0, 1] . Then the following inequality holds:

1
b − a

b∫
a

f
x−a
b−a (x) 1

b−x
b−a (x) dx ≤

1
s1 + 2

f (b) + β (2, s1 + 1) f (a)

+
1

s2 + 2
1 (b) + β (2, s2 + 1) 1 (a) .

Proof. Since f and 1 are s1−convex and s2−convex functions, respectively, we can write

f t (tb + (1 − t) a) ≤
[
ts1 f (b) + (1 − t)s1 f (a)

]t

and
1(1−t) (tb + (1 − t) a) ≤

[
ts21 (b) + (1 − t)s2 1 (a)

](1−t) .

Since f , 1 are non-negative, we have

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a) (12)

≤
[
ts1 f (b) + (1 − t)s1 f (a)

]t [ts21 (b) + (1 − t)s2 1 (a)
](1−t) .

By using the General Cauchy Inequality in (12), we get

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a)
≤ t

[
ts1 f (b) + (1 − t)s1 f (a)

]
+ (1 − t)

[
ts21 (b) + (1 − t)s2 1 (a)

]
.

By integrating with respect to t over [0, 1] , we have

1∫
0

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a) dt

≤

1∫
0

[
ts1+1 f (b) + t (1 − t)s1 f (a) + ts2+11 (b) + t (1 − t)s2 1 (b)

]
dt.

Hence, by taking into account the change of the variable tb + (1 − t) a = x, (b − a)dt = dx, we obtain the
required result.
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Corollary 2.7. If we choose s1 = s2 = 1 in Theorem 6, we have the inequality;

1
b − a

b∫
a

f
x−a
b−a (x) 1

b−x
b−a (x) dx ≤

1
3
[

f (b) + 1 (b)
]
+

1
6
[

f (a) + 1 (a)
]
.

3. RESULTS FOR (α,m)−CONVEX FUNCTIONS

Similar results to Section 2 are given in this section, but now for (α,m)−convex functions.

Theorem 3.1. Suppose that f , 1 : [a, b] → [0,∞) , 0 ≤ a < b < ∞, are (α1,m1)−convex and (α2,m2)−convex
functions, respectively, where α1,m1, α2,m2 ∈ (0, 1]. If f , 1 ∈ L1 [a, b] , then the following inequality holds:

1
b − a

b∫
a

f
x−a
b−a (x) 1

b−x
b−a (x) dx

≤
1

α1 + 2
f (b) +

m1

2 (α1 + 2)
f
( a

m1

)
+

1
(α2 + 1) (α2 + 2)

1 (b) +
m2

(
α2

2 + 3α
)

2 (α2 + 1) (α2 + 2)
1

( a
m2

)
.

Proof. Since f and 1 are (α1,m1)−convex and (α2,m2)−convex functions, respectively, we can write

f t (tb + (1 − t) a) ≤
[
tα1 f (b) + m1 (1 − tα1 ) f

( a
m1

)]t

and

1(1−t) (tb + (1 − t) a) ≤
[
tα21 (b) + m2 (1 − tα2 ) 1

( a
m2

)](1−t)
.

Since f , 1 are non-negative, we have

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a) (13)

≤

[
tα1 f (b) + m1 (1 − tα1 ) f

( a
m1

)]t [
tα21 (b) + m2 (1 − tα2 ) 1

( a
m2

)](1−t)
.

By using the General Cauchy Inequality in (13), we get

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a)

≤ t
[
tα1 f (b) + m1 (1 − tα1 ) f

( a
m1

)]
+ (1 − t)

[
tα21 (b) + m2 (1 − tα2 ) 1

( a
m2

)]
.

By integrating with respect to t over [0, 1] , we have

1∫
0

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a) dt

≤
1

α1 + 2
f (b) +

m1

2 (α1 + 2)
f
( a

m1

)
+

1
(α2 + 1) (α2 + 2)

1 (b) +
m2

(
α2

2 + 3α
)

2 (α2 + 1) (α2 + 2)
1

( a
m2

)
.

Hence, by taking into account the change of the variable tb + (1 − t) a = x, (b − a)dt = dx, we obtain the
required result.
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Corollary 3.2. If we choose α1 = α2 = 1 in Theorem 7, we have the inequality (5).

Theorem 3.3. Suppose that f , 1 : [a, b] → [0,∞) , 0 ≤ a < b < ∞, are (α1,m1)−convex and (α2,m2)−convex
functions, respectively, where α1,m1, α2,m2 ∈ (0, 1]. If f , 1 ∈ L1 [a, b] , then the following inequality holds:

1 (b)

(b − a)α2+1

b∫
a

(x − a)α2 f (x) dx + m2

1
(

a
m2

)
(b − a)α2+1

b∫
a

[(b − a)α2 − (x − a)α2 ] f (x) dx

+
f (b)

(b − a)α1+1

b∫
a

(x − a)α11 (x) dx + m1

f
(

a
m1

)
(b − a)α1+1

b∫
a

[(b − a)α1 − (x − a)α1 ] 1 (x) dx

≤
1

b − a

b∫
a

f (x) 1 (x) dx +
1

α1 + α2 + 1
f (b) 1 (b) +

m2α2

(α1 + 1) (α1 + α2 + 1)
1

( a
m2

)
f (b)

+
m1α1

(α1 + 1) (α1 + α2 + 1)
f
( a

m1

)
1 (b) +

m1m2α1α2 (α1 + α2 + 2)
(α1 + 1) (α2 + 1) (α1 + α2 + 1)

f
( a

m1

)
1

( a
m2

)
.

Proof. Since f and 1 are (α1,m1)−convex and (α2,m2)−convex functions, respectively, we can write

f (tb + (1 − t) a) ≤ tα1 f (b) + m1 (1 − tα1 ) f
( a

m1

)
and

1 (tb + (1 − t) a) ≤ tα21 (b) + m2 (1 − tα2 ) 1
( a

m2

)
.

By using the elementary inequality, e ≤ f and p ≤ r, then er + f p ≤ ep + f r for e, f , p, r ∈ R and by a similar
argument to the proof of Theorem 4, we get the required result.

Corollary 3.4. If we choose α1 = α2 = 1 in Theorem 8, we have the inequality (7).
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