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Abstract. This paper contains the formulation of an algorithm for solving two-point singular nonlinear
boundary value problems of ordinary differential equations. This method is basically a fourth derivative
block method obtained from the collocation and interpolation of an assumed derivatives and functional of a
basis function. Its implementation was on the evaluation of derivatives of the given smooth first derivative
function u'(t) up to the fourth derivative, at some points t. It is proved that the algorithm is consistent,
zero-stable and convergent. Errors for uniform step lengths are also investigated and presented. Numerical
examples are provided to show the efficiency of the algorithm.

1. Introduction
Considering the following singular non-linear two-point boundary value problem
a(tyu”(£) + b(tu'(t) = f(t,u,u’), t€[0,1], w'(0) =0, u(l) = u 1)

with assumption that
a(0) =0, a(t) >0, t € (0,1),b(0) # 0, (0, u(0),u’(0)) =0 (2)

with coefficients a(t) and b(t) are differentiable functions on [0, 1] and f(¢, u, u’) is assumed continuous on
w := [0,1] x R2. It could be observed that the problem is singular at the initial point ¢ = 0. If a(t) and b(t)
satisfy

a(1) = 0,b(1) # Oand f(1, u(1), 4’ (1)) = 0, 3)

it is also singular at point ¢ = 1.

Problems of the form (1) satisfying conditions (2) to (3) posses property which make the solutions difficult
to obtain or the numerical solutions are poor, and as such special techniques are required for their effective
solution. Problems (1) with condition (2) are one-point singular in nature while (1) with conditions (2)
and (3) are two-point singular problems. These singular two-point problems happen much of the time in
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numerous models, for example, electro-hydrodynamics and some warm blasts, and in the recent times, have
been researched by utilizing some numerical techniques by Baxley ([3] and [4]), Quand Agarwal [5], Chawla
and Subramanian ([6] and Chawla, Subramanian and Sathi [7]). The numerical approach explored in these
literature include cubic and quintic spline methods, and the collocation methods. An even-order two-point
boundary value problem solutions were obtained by Liu[8]. A continuous generic algorithm was used by
Arqub, Abo-Hammour, Momani and Shawegfeh [9] for solving the form of problem in (1). A subdivision
collocation method for solving two point boundary value problems of order three was considered by
Mustafa and Ejaz [10]. Parametric difference method was used by Pandey [11] in the solution of two-point
boundary value problem. An alternative approach was considered by Ghomanjani and Shateyi [12] using
the Bezoer curve method with an orthogonal based Bernstein polynomials constructed by the Gram-Schmidt
technique. Solutions of one-point singular Lane-endem equations and related stiff problems were effectively
solved using some new numerical techniques by Ogunniran, Haruna & Adeniyi [13] and also Ogunniran
[14] obtained a class of multi-derivative method for solution of some singular Advection equations of partial
differential equations. An extensive linear analysis was carried out on some Runge-kutta methods on their
possibilities in the solution of one point singular Lane-Endem equations by Ogunniran, Tayo, Haruna and
Adebisi [15]. Extensive analysis for the possibility of existence and uniqueness of solution for a two-point
boundary value problems for ordinary differential equations was carried out by Eloe and Henderson [16]
in their paper titled; two-point boundary value problems for ordinary differential equations, uniqueness
implies existence. However, two-point boundary value problems may exist in problems of order greater
than two as found in Agarwal and Kelevedjiev [17]. This paper presents a unique approach on the solution
of fourth-order two-point boundary value problems.

2. Method

Recently, lots of attention has been on obtaining more effective and proficient methods for solving stiff
problems and subsequently a wide class of methods have been proposed. A possibly decent numerical
method for solving stiff systems of ordinary differential equations need to have good accuracy and some
reasonably wide region of absolute stability (Dahlquist, 1963). According to Hairer and Wanner (1996), the
search for high order A-stable multi-step methods is carried out in two main ways: using high derivatives
of solutions and including some additional stages, such as off-step points or super-future points. And this
transforms into the many field of general multi-step methods.

Throughout the formulation of this method, except where stated otherwise, the transformation

_2t—ty)

T kh

1, (4)

where k = 3 is the step number and # is the step length, a small distance taken that does not entirely leave
the interval.

For purpose of obtaining an approximation for (1), we assume a continuous approximation for u,(t) of a
three step fourth derivative method of the form:

4
u() ~ au + Y HEOL T+ Y)Y Wy f) ®
i=1

4 3
i=1 j=1

for u’ = f(t,u) where f(t, u) is continuous and differentiable, u, is an approximation to u(t,), t, = nh; h > 0
and £ = fO(ty, u,) such that:
f(O) (tm/ um) (6)

AfIV(t, u) .\ u)af(j‘l)(t, u)

() —
f] (tmr um) - (92? 7 &M (7)
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To this end, approximation of the exact solution u(t) was sought by evaluating the function:

16

u(t) = Z ajt (8)

=0

where a;, j = 0(1)16 are coefficients determined, t/ are the basis functions of degree 16.
While ensuring that (5) corresponds with the analytical solution at the end point t,, the following conditions
were imposed on u(x) and its derivatives; u®(t), k= 1(1)4

”(tn+j) = Up+j, j=0
M’(tnﬂ') = fn+]', ] = O, 1, 2, 3.
u"(t,,+]~) = In+js j=0,1,2,3. 9)
uI’,(tn+j) = hn+j/ j=0,1,2,3.
M(iv)(tnﬂ') = in+j/ j=0,1,2,3.

while the conditions of (9) are imposed on (8), the following system equations were obtained;

ao = Yn
a; = fn
a +2ay+3a3+4a,+5a5+6ag+7ay + 8ag
+9a9 +10ay9 + 11a11 + 12a1p + 13a13 + 14 a14 + 15a15 + 16 a1 = fn+1
a1 +4a,+12a3 +32a4 +80as + 192a¢ + 448 a7 + 1024 ag
+2304 a9 + 5120 a9 + 11264 a11 + 24576 a15 + 53248 a3
+114688 a4 + 245760 a15 + 524288 a14 = fn+2
a4y + 6y + 27 a3 + 108 ay + 405 as + 1458 ag + 5103 a7 + 17496 ag
+59049 a9 + 196830 a1g + 649539 ay1 + 2125764 a1, + 6908733 a13
+22320522 a14 + 71744535 a15 + 229582512 a16 = fy43
2a; = gn
2ay +6as+12a4 +20as + 30ae +42a; + 56ag + 72 a9
+90 aip + 110411 + 132 a4, + 156 a3 + 182 a4 + 210 ais + 240 a16 = Jn+1
2ay;+12a3 +48a4 + 1604as + 480 a4 + 1344 a; + 3584 ag
+9216 a9 + 23040419 + 56320411 + 135168 a1, + 319488 a3 + 745472 a14
+1720320 a15 + 3932160 a16 = gu+2
2ay +18a3 + 108 a4 + 540 a5 + 2430 a4 + 10206 a; + 40824 ag
+157464 a9 + 590490 a1 + 2165130411 + 7794468 a1, + 27634932 a3
+96722262 a14 + 334807830 a15 + 1147912560 a16 = gn+3
6{13 = I’ln
6az +24a4 + 60as + 120ag + 210a7 + 336 .ag + 504 ag
+720a19 + 990411 + 132041, + 1716 a13 + 2184 a14
+2730a15 + 3360 a1 = hn+1
6as +48a4 +240as + 960 a¢ + 3360 a; + 10752 ag + 32256 a9
492160419 + 253440 a11 + 67584041, + 1757184 a13 + 4472832 a14
+11182080a15 + 27525120 a14 = hy4o
6az +72a4 +540as + 3240 a6 + 170104a; + 81648 ag + 367416 a9
+1574640 a9 + 6495390 a11 + 25981560 a1, + 101328084 a13
+386889048 a14 + 1450833930 a15 + 5356925280 416 = hy43
24 ag = in
24 a4 4+ 1204as5 + 360 a4 + 8404, + 1680ag + 3024 a9
+5040a10 + 7920 a1 + 11880 a1, + 17160 a3 + 24024 a14
+32760a15 + 43680 a16 = 1,41
24a4 + 240as5 + 1440a4 + 6720 a; + 26880 ag + 96768 a9
+322560 a1 + 1013760 a11 + 3041280 a1, + 8785920 a13 + 24600576 a14
+67092480 a15 + 178913280 a1 = 1,142
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53
24 a4 +360as + 324044 + 22680 ay + 136080 ag + 734832 aq
+3674160 a1 + 17321040 a11 + 77944680 a1, + 337760280 a13 + 1418593176 a14 (10)
+5803335720 a15 + 23213342880 a1 = in+3

Solving (10),4;, j = 0(1)16 were obtained, the values were substituted in (8) and related term were collected
in Up, fn/ fn+1/ fn+2/ fn+3/ gn/ gn+1/ gn+2/ gn+3/ hn/ hn+1/ hn+2/ hn+3/ in/ in+1/ in+2/ in+3 to obtain:

u(t) = aptty + h1(t) fu + W2Po()gn + 12Ba(t)n + B Ba(t)in + h[y11(8) fusr + Y12(t) fava + V13(D) fuss]
+h2 [y21(O 1 + V22 (D ns2 + Y23(Dgnss] + 12 [y31(Ohne1 + Y32(Ohnsa + Y33(Ohua] (11)
+i* [ya (Dine1 + yao(Binsa + Ya3()inss]

where

a,(t) =1

Bu(t) =t — 543916 | 71371715 _ 6258855517 | 276696055(% _ 1250675 | 9332263110 _ 50492471
1= 1296 3888 16329 5598772 2916 34992 42768
522713512 _ 125136511 | 18545110 _ 24774 | 471141

139968 15163

; 15309 s 23328 19119744 0
ﬁz(t) =-81 t5 + 2007t° _ 19035t + 68955t° _ 320945t + 101285¢

14 32 144 64
_ 1387051 + 3526512 _ 13795413 469514 _ 4715 2116

28 20 48 48 512
£) = 186315 _ 10359 t° + 3678757 _ 63712518 + 896951 _ 276059 | 148197
53( ) - 716 16

2 256 T3 16 176
_ 1852502 | 1485 _ 7514 L 95 g1
o4 20 7 6 51
_ 5296 3689165 | 10069957 _ 119175456, 1974065¢ 17350807 A9
Ba(t) = 25~ + +
4() = 5 972 206 69 Tl664 139968
L 2742609111 _ 635047512 | 894155113 _"957045¢ | 111765 _ azlifle
12768 279936 151632 979776 1664 1119744
_ 2 47115 6190965  72497¢ | 3370428565 _ 3387176 , 549763110
n(t) =
yu(t) =1/2t + 8ol 504 T TIge60d 2187 T T 5832
14710911 | 60395312 _ 5983#1° | 67715¢% _ 211#15 | 533t16
3564 46656 2106 163296 _ 5832 T 373248
_ _ 891t i t £ t H t
yiat) 8911 | 18811 _ 321037 134850 _ dzazniP | 717291 | 189800
=~ 28 8 2% 64 352
L 2346502 | 17941113 | 2095114 _ 918 | 134

5 128 . 416 , 48 s 96 9512 10 i
’)/13(t) — _251(1)t + 11277t° _ 101169t + 354405t° _ 25249t + 3935¢7 _ 42811t

112, 256 18 4 388
410849612 424141 14455‘1 29415 13416
64 104 22 48 512
- _ X X _ X x° X X
t) 19325 | 4037x% _ 322337 6174652 _ 3921371x° , 19200171
yault) = 90 324 972 1664 69984 46656 (12)
_ 2020454 | 72045712 199861x'3 | 107395x1¢ _ 755415 , 583x!°
9504 3312 101088 326592 23328 ' 373248
) =1/6 3 _ 533£ | 7015 _ 123413 £ + 76621115 _ 119969 #° 4 119401 to
yll) = 180 648 6048 31104 5832 9720
25199411, 12701412 33540, 3534 35415 | 11410
4752 7776 936

6804 7776
81 |, 99t° 37537 | 680115 _ 63241+
7/23(t) —T0 T3 - + -

10 2 28 32 288 40 352
4514942 267141 | 11344 345, f© (t) = 8L _ 909¢ , 32589(7 _ 284978 | 16205 _ 3147
192 416 112 32 256 //31) = ¢ 16 224 128 72 20

_2579#2 | 1674 _ 113p | 35 416
9 26 112 32 256
(t) = B 24145 | 899947 493731 | 1570078 _ 603240 , 81891
V32(t) = g 162 2268 7776 23328 1215 3168
14773112 | 812943 10974 | 31#° 1146
15552 33696 27216 7776 62208
(t)=1/24 p4_ LP | 14510 365t 794418 _ 1495¢ + 11591410 2541
V3s3it) = 45 216 324 62208 1458 19440 99
+ 1201 2 35413 6514 ¢l + t1o
15552 2106, ' 2721 4860 ' 124416
(t) = 78 + 5715 _ 963t 4+ 1998 _ 41233 £ 3052740 5279411
V41 10 4 28 4 864 960 352
4+ 1921 2 3748 7944 2341 t16
38 448 1440 " 1536
(t) = 27485 + 12316 2241+ + 979 8 34694 | 5501#°  1015¢!!
Ya2lt) = =3 16 112 256 108 240 88
+785t12 — 34 9t 1148 £
192 56 720
t) = 5 47131 £ 4+ 1081 8 6905+ + 340310 _ 1087 "
Y43lt) = —g5 * 18 756 3888 23328 15552 9504
+1313t12 _ 121413 19744 74 t!
31104 11232 ' 108864 = 38880 ' 124416

62208
6219 t19 271391

13639 411
T %
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Evaluating (12) at t,11, ts+2 and t,.3 yield the desired discrete block method below:

34637 ins3 h4 _ 2617 in4 h4 _ 37603 iy41 h4 + 50857 i, h4

Unt1 = 1868106240 1064448 322240 373621248
+401183h,,+3 h3 + 224473 hyy4p h3 + 965 Nypi1 h3 + 4135199 h,, h3
934053120 11%31520 2%86804 9340%%128
20331329 g3 h2 __ 398083 gu+2 h2 __ 7097579 g1 h2 + 331133249 g, h2
5604318720 23063040 5604318720
h 12457877 fu43 h 1071529 f12 h 1730473 fy41 h 427519381 f, +
1120863744 4612608 . 4612608, 1120863744 n
u = _pAloies _ painn _ pa 64y iy 5091,
e T o, B s
n+3 n+2 n+l n
Sy T TemsT + I mpgst + 104247
_h2 47504 gnis h2 10441 gni> hz 8864 g,1+1 " h2 54539 g,,
291207924]5"935 6577 015 7864 f, 45045 8399391 945935
n+3 n+2 n+1 n
h 21891874 1h . 742_91? . 7;-9]? 218918Z ;-1 ,u”
— n+3 2 In+1 In
Uni3 = h 512512 +h 197120 h 197120 +h 512512
+h3 6327 hyy.3 + h3 41553 hy4p + h3 41553 I1yy41 + h3 6327 hy,
1281280 1281280 1281280 1281280
_hz 162531 7,43 h2 194643 gp2 hz 194643 7,11 hz 162531 g,,
2562560 2562560 2562560 2562560
h28905 143 h80919 fni2 h80919fn+1 h28905 fu +
73216 73216 73216 73216 Un

2.1. Order and Error Constant

54

(13)

Applying Taylor’s series expansion on (5) and collecting like terms, we have the difference equation

u(t); h] = cou(t) + crthy@(t) + cohy@(t) + -+ + cghy D (t) + - --

where
Co = 1- ay

a1 =3-Bi-Yiivp

_ 31 _ 31! 3 .
=3 T g &=

According to Henrici (1962), a method has order p if
I[u(t); ] = o(h*")

where
CQ=Cc=""=¢ =0butcp+1 # 0.

Using this principle, the order and error constant of (13) are shown below

Evaluating Point Order  Error Constant

183
() 16 1883993334240000
[0 16 §2585703900720000
; 16 570391

1n+3 32043880397168640000

The method (13) is consistent since order of the method is 16 which is greater than 1.

2.2, Zero-stability

This relates to a phenomenon where the step size i — 0. Taking limit of (13) as & — 0, we have:

Untl = Up42 = Up3 = Uy

which can be written in matrix form as
IU; - BoU;_1 =0

(14)

(15)

(16)

(17)

(18)

(19)
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where

According to Lambert (1975), a block method is zero-stable if the roots 7y of the first characteristic polynomial
&(r) = det|lr — By| does not exceed 1i.e. |r¢] < 1. The first characteristic polynomial of method (13) is given
by

P?r-1)=0 (20)

The roots of (20) are r = 0,0, 1 in which all is < 1, thus Method (13) is zero-stable.

2.3. Convergence

According to Henrici (1962), we can establish the convergence of the block method since consistency
and zero-stability are necessary and sufficient reasons for convergence.

2.4. Linear Stability

Practically, the robustness of a method is reliably found with /# > 0, this implies that the convergence
of a method is a necessary but not a sufficient condition for a method to be useful. Linear stability is a
conceptional behaviour of numerical methods concerned with the behaviour of the method when / > 0 and
its region of absolute stability. This is a concept different from zero-stability. The linear stability properties
of the derived method is determined by expressing it in a form applicable to the test problem:

u' = Au, for which u, = Au,, u! = \’u,,--- = AN, A<0 (21)

to yield:
Uur1 =M@)U,, z=hA (22)

where the amplification matrix M(z) is given by:

M(z) = (A(O) —zBO — 2¢O _ 3pO) _ z4E(0))_1(A(1) +2zBM 4+ 22¢ 4 BpM 4 z4E(1)). (23)
where z = hA.
1 00 0 0 1
A9=10 1 0| AD=]0 0 1
0 0 1 0 0 1
1730473 1071529 12457877 0 0 427519381
1612608 4612608 1120863744 1120863744
BO — 7864 6577 29272 BW=| 0 o 839939
= 9009 9009 2189187 = 2189187
80919 80919 28905 0 0 28905
73216 73216 73216 73216
_ 7097579 _ 398083  _ 20331329 0 0 331133249
23063040 3294720 5604318720 5604318720
cO = 8864 10441 47504 cv=|o o 654539
= 15045 15045 10945935 = 10945935
194643 194643 162531 0 0 162531
2562560 2562560 2562560 2562560
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i

Figure 1: Region of Absolute Stability of Method (13)

965

2306304

) _ 584
D =" s

41553

1281280

37603

" 5322240

©0) — __64
E™ = 10395

_ 79
197120

The matrix M(z) has eigenvalues &1,&;,- -

401183 0 0 4135199
934053120 934053120
1864 1) _ 470
3648645 D=0 0 104247
6327 0 0 6327
1281280 1281280
__ 34637 0 0 50857
1868106240 373621248
__16 1) _ 509
729729 EV=100 3648645
-8 _81
512512 00 512512

,ém = 0,0,---,&,, where the dominant eigenvalue &, is the

stability function R(z) which is a rational function with real coefficients, m is the order of R(z),

28561 z'% + 1164410z + 25844325210 + 401535225 2° + 4765597305 z8 + 44819838000 z”
+338397658200 z° + 2046767184000 z° + 9765253436400 z* + 35606883312000 z°
+93666717144000 z* + 158855192496000 z + 130821923232000

z12 =170z + 14325210 — 754425 2% + 26611305 z8 — 648043200 27

(24)

+11234575800 z° — 141313788000 z° + 1292613260400 z* — 8445396960000 z°
+37600178616000 z> — 102788653968000 z + 130821923232000

The stability function and plot for the method is as given below:

3. Numerical Examples

This section contains some two-point singular boundary value problems, their conditions and true

solutions as found in literature.
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Test Problem 1 [5]
w’(t) + 3u'(t) = BF2(1 + B + ptF)

te(0,1),u'(0)=0,u(l) =e (25)
u(f) = e

Test Problem 2 [5]

w’(t) + Fu’'(t) = 3cos(t) — tsin(t)
te(0,1),u'(0) =0,u(l) = cosl + sinl (26)
u(t) = cost + tsint.

Test Problem 3 [5]

w’ () + 2 () = —2(e" +e?)
te(0,1),w(0)=0,u(l)=0 (27)

u(t) = 2log

1+

Test Problem 4 [11]

The boundary value problem below arose from the analysis of the confinement of a plasma column by
radiation pressure with different boundary conditions,

u”(t) = Asinh(Au(t)), 0 <t <1
subject to boundary conditions

w(0) =1, and (1) = 0. (28)
u(t) = sinh(t)
4. Discussion of Results and Conclusion
The following formula
lirr} lu(t) — ui(t)| (29)

where u(t) is the exact solution and u;(t) is the numerical solution evaluated at some t € [0, 1], was used
in the computation of maximum errors. Numerical methods were programmed on Windows 10 operating
system in MATLAB 9.2 environment on 8.00GB RAM HP Pavilion x360 Convertible, 64-bits Operating
System, x64-based processor Intel(R) Core(TM) i3-7100U CPU @ 2.40GHz.

The following table display the comparison of performances for new method against existing methods with
Computational time.
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Table 1: Table of Comparison of Maximum Errors with Existing Methods Using Different /1, § = 1 for Test Problem 1

Test Problem Method h = % =16 = 3l2
Qu & Agarwal (1997) || 1.720000 E(-2) 2.800000 E(-3)  2.660000 E(-4)
1 Method (13) 5.714330 E(-5) 5.714330 E(-5) 5.716299 E(-5)
Qu & Agarwal (1997) || 1.090000 E(-5) 1.080000 E(-6)  7.890000 E(-8)
2 Method (13) 5.403023 E(-9) 5.403023 E(-9) 5.461926 E(-9)
Qu & Agarwal (1997) || 1.200000 E(-3) 1.070000 E(-4)  8.030000 E(-6)
3 Method (13) 2.021798 E(-8) 2.021798 E(-8)  1.200000 E(-8)

Table 2: Table of Comparison of Maximum Errors with Existing Method Using Different & and A, for Test Problem 4

A Method h= 31 h= é %
Pandey (2018) || 1.1055857 E(-1) 1.1045857 E(-1)  1.1032658 E(-1)
0.1 Method (13) 1.387182 E(-4)  1.387225 E(-5)  1.387229 E(-8)
Pandey (2018) || 1.7244926 E(-1) 1.7190818 E(-1) 1.7155264 E(-1)
0.15 | Method (13) 1.559298 E(-4)  1.559312 E(-5)  1.559399 E(-8)
Pandey (2018) || 2.374965 E(-1)  2.358833 E(-1) 0.0000 E(0)
0.2 Method (13) 0.000000 E(0) 0.000000 E(0) 0.000000 E(0)

1)

Table 3: Table of Computational Time of Method (13) Measured in seconds

Test Problem || i Computation Time
i 0.3438
1 % 0.4063
> 0.4844
% 0.2500
2 = 0.3250
= 0.3350
i 0.2110
3 * 0.2520
> 0.3200
% 0.3250
4 = 0.3255
= 0.3525

DTables 1 and 2 show the numerical computational results on test problems considered. Extensive comparison was done with
existing methods in literature. The method was demonstrated on some Examples and the superiority of the derived method over
existing methods was established. It is worthy to say that the derived methods exhibit stronger computational strength executed
under very low computational times as shown in Table 3. Figures 2-9 show the graphical comparison for solutions of derived method
with exact and error distribution curve across the selected interval.
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5 New Numerical Method vs Exact Solution for Test Problem 1 - New Numerical Method vs Exact Solution for Test Problem 3
26 uft) Exact
12
24
’
22
2 08
’ 18 ’ 06
16
04
-
—+—u(t) Exact
02
12
‘0 01 02 03 04 05 06 07 08 09 1 oﬂ 01 02 03 04 05 06 [1hg 08 09 1
t t
Figure 2: Method (13) vs Exact for Test Problem 1 Figure 6: Method (13) vs Exact for Test Problem 3
" .10 Error Distribution across t for Test Problem 1 5 .10® Emor Distribution across t for Test Problem 3
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