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Classification of Ruled Surfaces Family with Common Characteristic
Curve in Euclidean 3-space
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Abstract. Classification of ruled surfaces that satisfying certain geometric conditions has been studied by
many researchers in the past years. The purpose of this paper is to study and classify the family of ruled
surfaces whose common directrix satisfies the requirements of characteristic curves in three-dimensional
Euclidean space. The family of ruled surfaces is parameterized by its directrix curve and director vector
that is expressed by a linear combination of Frenet frame with angular functions as coefficients. According
to the type of characteristic directrix curve, the family of ruled surfaces is classified into three types, and
one type when the family is developable.

1. Introduction

A ruled surface is constructed by continuous motion of a straight line called the ruling (or generator)
through a given curve which is called the base (or directrix) curve. The ruled surfaces are classical subject
in differential geometry and they have many recent applications in different areas of sciences including
computer-aided geometric design (CAGD), computer graphic, architectural designing, mechanics, robotics,
product design and manufacturing [4, 10].

Developable surfaces are a special class of ruled surfaces that have vanishing Gaussian curvature. The
developable surface is locally isometric to a plane, this means that the developable surface can be developed
(flattened) onto a plane without stretching and tearing. In manufacturing, a developable surface can be
produced from paper or sheet metal with no distortion. Therefore, the developable surfaces are commonly
used in industrial design and modeling [3, 12].

Geodesic, asymptotic, and line of curvature are characteristic curves that lie on the surface and have been
used in surface analysis. The geodesic curve gives the shortest path between two given points on curved
spaces. All straight lines in the plane are geodesics, as are the rulings of any ruled surface [9]. A curve is
an asymptotic if its normal curvature is equal to zero. All straight lines on a surface are asymptotic lines.
Finally, a line of curvature is a curve whose tangent always points along with a principal directions i.e. a
direction in which the normal curvature is maximum or minimum. In shape analysis, the line of curvature
is one of the most important characteristic curves indicates the directions in which a shape bends extremely.
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There are several articles for designing the surfaces family that possess the given curve as a characteristic
curve. Wang et al. [13] and Li et al. [6] studied the parametric representation of a surface pencil with a
common spatial geodesic and line of curvature respectively. Bayram et.al. [1] studied surface pencil with a
common asymptotic curve.

In this article, a family of ruled surfaces with common characteristic curve is studied and classified in
Euclidean 3- space. A ruled surfaces family is constructed by its directrix curve and director vector that is
expressed by a linear combination of Frenet frame with angular functions as coefficients. According to the
characteristic directrix curve, three types of ruled surfaces family are classified. The main theorem shows
that the common directrix curve is a geodesic or an asymptotic if and only if the ruled surfaces family is
a rectifying or an osculating. And the family of generalized ruled surfaces with a special condition has a
directrix curve as a line of curvature. Finally, the developability condition of such families is studied.

The paper is organized as follows. In section 2, some basic concepts about space curves and ruled surfaces
are given. The main results are studied in section 3, where the family of ruled surfaces based on its
common directrix curve are classified into three categories (rectifying, osculating, generalized) whose
common directrix curve is ( geodesic, asymptotic, line of curvature) respectively. The classification classes
are investigated under developability condition in section 4. Finally, the conclusion and future works are
given in section 5.

2. Preliminaries

This section introduces some basic facts about the differential geometry of space curves and ruled
surfaces in three-dimensional Euclidean space, as well as some basic definitions and notions that are
required subsequently. More details can be found in such standard references as [2, 9].

2.1. Curves in Euclidean 3-space
A smooth space curve in 3-dimensional Euclidean space E3 is parameterized by a map γ : I ⊆ R→ E3, γ

is called a regular if γ′ , 0 for every point of an interval I ⊆ R, and if |γ′(s)| = 1 where |γ′(s)| =
√
〈γ′(s), γ′(s)〉,

then γ is said to be of unit speed (or parameterized by arc-length s). For a unit speed regular curve γ(s) in
E3, the unit tangent vector t(s) of γ at γ(s) is given by t(s) = γ′(s). If γ′′(s) , 0, the unit principal normal
vector n(s) of the curve at γ(s) is given by n(s) =

γ′′(s)

‖γ′′‖
. The unit vector b(s) = t(s) × n(s) is called the unit

binormal vector of γ at γ(s). For each point of γ(s) where γ′′(s) , 0, we associate the Serret-Frenet frame
{t,n, b} along the curve γ. As the parameter s traces out the curve, the Serret-Frenet frame moves along γ
and satisfies the following Frenet-Serret formula.

t′(s) = κ(s)n(s),
n′(s) = −κ(s)t(s) + τb(s),
b′(s) = −τ(s)n(s).

(1)

where κ = κ(s) and τ = τ(s) are the curvature and torsion functions.The planes spanned by {t(s),n(s)},
{t(s), b(s)} and {n(s), b(s)} are respectively called the osculating plane, the rectifying plane and the normal
plane. When the point moves along the unit speed curve with non-vanishing curvature and torsion, the
Serret-Frenet frame {t,n, b} is drawn to the curve at each position of the moving point, this motion consists
of translation with rotation and described by the following Darboux vector

ω = τt + κb. (2)

The direction of Darboux vector is the direction of rotational axis and its magnitude gives the angular
velocity of rotation. The unit Darboux vector field is defined by

ω̂ =
τ

√

τ2 + κ2
t +

κ
√

τ2 + κ2
b. (3)
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For a regular curve on a surface, there exists another frame which is called Darboux frame and denoted
by {t(s), 1(s),N(s)}. In this frame, t(s) is the unit tangent of the curve, N(s) is the unit normal of the surface
and 1 is a unit vector given by 1 = N× t. Derivative of the Darboux frame according to arc-length parameter
is governed by the following relations

t′(s) = κ11(s) + κnN(s),
1′(s) = −κ1t(s) + τ1N(s),
N′(s) = −κnt(s) − τ11(s).

(4)

where κ1 is the geodesic curvature, κn is the normal curvature and τ1 is the geodesic torsion at each
point of the curve γ(s) which are given by

κ1 =< γ′′(s), 1 >, κn =< γ′′(s),N > and τ1 =< N′, 1 > . (5)

The relation between Darboux frame and Serret-Frenet frame can be given by the following matrix
representation  t

1

N

 =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ


 tnb
 . (6)

Where {
1(s) = cosφ(s)n(s) + sinφ(s)b(s),
N(s) = − sinφ(s)n(s) + cosφ(s)b(s). (7)

Differentiating (7), using (4) and (1), we get the relation between geodesic curvature, normal curvature,
and geodesic torsion with curvature and torsion as follows

κ1 = κ cosφ, κn = κ sinφ, and τ1 = τ +
dφ
ds
. (8)

Definition 2.1. A curve lying on a surface is

1. a geodesic if and only if its geodesic curvature vanishes (κ1 = 0 ). By (8) and (7), it is equivalent to

N = ±n. (9)
2. an asymptotic if and only if its normal curvature vanishes (κn = 0 ). By (8) and (7), it is equivalent to

N = ±b. (10)
3. a line of curvature if and only if its geodesic torsion vanishes (τ1 = 0 ). By (8), it is equivalent to

τ +
dφ
ds

= 0. (11)

2.2. Ruled surfaces

A ruled surface is generated by the motion of a straight line on a given curve and parameterized by

X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ `, v ∈ R. (12)

A unit regular curve γ(s) is called a base curve (or directrix), and the line passing through γ(s) that is
parallel to D(s) is called the ruling (or generator) of the ruled surface at γ(s). D(s) is a unit director vector
field that gives the direction of the ruling. Different ruled surfaces are constructed based on different γ(s)
and D(s). The unit normal vector field to the ruled surface is defined by

N(s, v) =
Xs × Xv

|Xs × Xv|
=

(γ′ ×D) + v(D′ ×D)
|(γ′ ×D) + v(D′ ×D)|

. (13)
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A point on a ruled surface that satisfies Xs × Xv = 0 is called a singular point, where the surface normal
is not defined, a point that is not singular is called a regular. In general, a ruled surface may have singular
points, they are located (if exist) on the striction curve which parameterized by [2]

C(s) = γ(s) −
〈γ′(s),D′(s)〉
〈D′(s),D′(s)〉

D(s), D′(s) , 0. (14)

A ruled surface where all rulings tangent the directrix i.e. γ′(s) = D(s), has singularities (edge of
regression) along the directrix curve. The Gaussian curvature is non-positive for a ruled surface, it van-
ishes identically for special classes called the developable surfaces. Equivalently, a ruled surface (12) is
developable if and only if [2]

det〈γ′(s),D(s),D′(s)〉 = 0. (15)

The vector field D(s) lies in the space formed by moving frame {t,n, b} of γ(s) and using (6) is defined by

D(s) = cosθ(s)t(s) + sinθ(s)1(s), where 1(s) = cosφ(s)n(s) + sinφ(s)b(s). (16)

Therefore D(s) can be given by[11]

D(s) = cosθ(s)t(s) + sinθ(s)(cosφ(s)n(s) + sinφ(s)b(s)). (17)

The functions φ(s) and θ(s) are two scalar functions that are called the first and second angular functions
[5]. When φ(s) and θ(s) take special choices, the director vector D(s) lies in a rectifying, an osculating, or a
normal plane of the directrix curve.

Definition 2.2. The surface defined by{
X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ `, v ∈ R, where,
D(s) = cosθ(s)t(s) + sinθ(s)(cosφ(s)n(s) + sinφ(s)b(s)). (18)

is called the family of ruled surfaces with a common directrix curve.

Through this paper, the singular points on the constructed ruled surface are avoided, therefore the
vectors γ′(s) and D(s) are not collinear, it requires that sinθ(s) , 0 which can be used as a regularity
condition, i.e. 0 < θ(s) < π. The surface normal along the directrix using (6) is given by

N(s, 0) = − sinφ(s)n(s) + cosφ(s)b(s). (19)

By choosing different values of φ(s) and θ(s) we obtain not only the members of ruled surfaces family
with common directrix curve but also yields different families. For example, when cosφ(s) = 0, sinφ(s) = 0,
or cosθ(s) = 0, the corresponding families of ruled surfaces are parameterized respectively by:

Xrec(s, v) = γ(s) + v(cosθ(s)t(s) + sinθ(s)b(s)), (20)
Xosc(s, v) = γ(s) + v(cosθ(s)t(s) + sinθ(s)n(s)), (21)
Xnor(s, v) = γ(s) + v(cosφ(s)n(s) + sinφ(s)b(s)). (22)

which are called the rectifying, osculating and normal ruled surfaces family respectively, and:

Drec(s) = cosθ(s)t(s) + sinθ(s)b(s), (23)
Dosc(s) = cosθ(s)t(s) + sinθ(s)n(s), (24)
Dnor(s) = cosφ(s)n(s) + sinφ(s)b(s). (25)

are called the rectifying, the osculating and the normal director vector respectively. This means that,
according to type of director vector field, three different families of ruled surfaces are constructed. Especially,
when the director vector field D(s) has the same direction of the tangent vector field t(s), the principal normal
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vector field n(s), the binormal vector field b(s), and the unit Darboux vector fieldω(s), then the corresponding
ruled surfaces are parameterized respectively by

Xt(s, v) = γ(s) + vt(s), (26)
Xn(s, v) = γ(s) + vn(s), (27)
Xb(s, v) = γ(s) + vb(s), (28)

XDar(s, v) = γ(s) + v(
τ

√

κ2 + τ2
t(s) +

κ
√

κ2 + τ2
b(s)). (29)

From the above discussion, we can easily obtain the following lemma which constructs the ruled surfaces
families by choosing different values of angular functions φ(s) and θ(s).

Lemma 2.3. The ruled surfaces family (18) with common directrix curve is

1. A generalized ruled surfaces family X1en(s, v) (18), if and only if cosθ(s) , 0, cosφ(s) , 0 and sinφ(s) , 0.
2. A rectifying ruled surfaces family Xrec(s, v) (20), if and only if cosφ(s) = 0.
3. An osculating ruled surfaces family Xosc(s, v) (21), if and only if sinφ(s) = 0.
4. A normal ruled surfaces family Xnor(s, v) (22), if and only if cosθ(s) = 0.

Similarly, the following members are constructed by choosing different values for angular functions.

Lemma 2.4. The ruled surfaces family (18) have the following members :

1. Principal normal ruled surface Xpn(s, v) (27), if and only if cosθ(s) = 0 and sinφ(s) = 0.
2. Binormal ruled surface Xb(s, v) (28), if and only if cosθ(s) = 0 and cosφ(s) = 0.
3. Darboux ruled surface XDar(s, v) (29), if and only if cosθ = τ

√

κ2+τ2
and sinθ(s) = κ

√

κ2+τ2
.

Excluding the tangent ruled surface (26) via the regularity condition ( sinθ(s) , 0 ), the other ruled
surfaces families X1en(s, v), Xrec(s, v), Xosc(s, v), and Xnor(s, v) , also the members Xn(s, v), Xb(s, v), and XDar(s, v)
will be studied in the next section and classified depending on the type of characteristic curve. It is worth
noting that during writing this paper, the geometry of Xrec(s, v) (20) is studied in [8].

3. Classification of ruled surfaces family with common characteristic curve

In this section, we classify the ruled surfaces family whose common directrix satisfies the requirements
of characteristic curve in three-dimensional Euclidean space. We show that the ruled surfaces family
parameterized by (18) whose directrix curve is characteristic can be classified into three types: (rectifying,
osculating, or generalized) ruled surfaces family. This is the main result of this article and will be given in
the following main theorem.

Theorem 3.1 (Main Theorem). Let X(s, v) be a ruled surfaces family parameterized by (18), and let γ(s) be its
common characteristic directrix curve with non-vanishing curvature and torsion, then γ(s) is :

1. Geodesic directrix curve, if and only if X(s, v) is a rectifying ruled surfaces family Xosc(s, v).
2. Asymptotic directrix curve, if and only if X(s, v) is an osculating ruled surfaces family Xrec(s, v).

3. Line of curvature directrix curve, if X(s, v) is a generalized ruled surfaces family X1en(s, v) satisfying τ+
dφ
ds = 0.

Proof. 1. From (19), N = ±n, if and only if cosφ(s) = 0, by lemma(2.4) and (9) this is equivalent to γ(s) is
a geodesic, if and only if X(s, v) is a rectifying ruled surfaces family.

2. From (19), it is clear that N = ±b, if and only if sinφ(s) = 0, by lemma(2.4) and (10) this equivalent to
γ(s) is an asymptotic, if and only if X(s, v) is an osculating ruled surfaces family.
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3. Let X(s, v) be the ruled surfaces family (18) where the common directrix curveγ(s) is a line of curvature,
hence γ(s) satisfies the constraint τ +

dφ
ds = 0 (11), it follows that

φ(s) = −

∫ s

0
τds. (30)

By using (30) in (18), we obtain

X(s, v) = γ(s) + v[cosθ(s)t(s) + sinθ(s)(cos
∫ s

0
τds n(s) − sin

∫ s

0
τds. b(s))]. (31)

Therefore, the family (31) is generalized ruled surfaces family X1en(s, v).

Remark 3.2. The proof of the main theorem showed how to construct the family of ruled surfaces whose directrix
curve is a line of curvature, cosθ(s) is the family parameter when varies the family members are constructed. The
normal ruled surfaces family Xnor(s, v) (22) degenerates to a member of this family via the line of curvature condition
(30) and can be produced by substitution cosθ(s) = 0 as the following

Xnor(s, v) = γ(s) + v[cos
∫ s

0
τds n(s) − sin

∫ s

0
τds b(s)]. (32)

The main theorem can be decomposed into the following three theorems which study the constructed
families separately and can be used as tools together with the main theorem to build the classification
theorem.

Theorem 3.3. Let X(s, v) be a ruled surfaces family given by (18), where the common directrix curve γ(s) is a line of
curvature. Then, the following statements hold:

1. X(s, v) is neither rectifying ruled surfaces family Xrec(s, v) nor osculating ruled surfaces family Xosc(s, v).
2. X(s, v) is a generalized ruled surfaces family X1en(s, v).
3. Xnor(s, v) (13) is a member of this family.

Theorem 3.4. Let X(s, v) be a ruled surfaces family given by (18), where the common directrix curve γ(s) is a
geodesic. Then, the following statements hold:

1. X(s, v) is neither generalized ruled surfaces family X1en(s, v) nor osculating ruled surfaces family Xosc(s, v).
2. X(s, v) is a rectifying ruled surfaces family Xrec(s, v).
3. Xb(s, v) (28) is a member of this family.

Theorem 3.5. Let X(s, v) be a ruled surfaces family given by (18), where the common directrix curve γ(s) is
asymptotic. Then, the following statements hold:

1. X(s, v) is neither generalized ruled surfaces family X1en(s, v) nor rectifying ruled surfaces family Xrec(s, v).
2. X(s, v) is an osculating ruled surfaces family Xosc(s, v).
3. Xn(s, v) (27) is a member of this family.

Based on the main Theorem and Theorems (3.3), (3.4) and (3.5), we can get the following theorem of
classification.

Theorem 3.6. (Classification of ruled surfaces family ) Let X(s, v) be a ruled surfaces family parametrized by (18),
where the common directrix is characteristic curve. Then X(s, v) is either a rectifying ruled surfaces family Xrec(s, v),
an osculating ruled surfaces family Xosc(s, v) or a generalized ruled surfaces family X1en(s, v) satisfying (30).

The explicit classification can be obtained in following equivalent theorem.
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Theorem 3.7. Let X(s, v) be a ruled surfaces family whose common directrix is a geodesic, an asymptotic or a line of
curvature. Then X(s, v) is a rectifying ruled surfaces family Xrec(s, v), an osculating ruled surfaces family Xosc(s, v)
or a generalized ruled surfaces family X1en(s, v) satisfying (30) respectively.

According to the above classification theorems, the ruled surfaces family whose common directrix is a
characteristic curve can be classified into three different type Xrec(s, v), Xosc(s, v) or X1en(s, v) based on the
type of the common directrix curve. Also, without any conditions, the families Xrec(s, v) and Xosc(s, v) have
common geodesic and asymptotic directrix curve respectively, whereas the family X1en(s, v) has a common
line of curvature when satisfying (30).

Corollary 3.8. Let X(s, v) be a ruled surfaces family of type Xrec(s, v), Xosc(s, v) or X1en(s, v) satisfying (30). Then,
the common directrix curve is geodesic, asymptotic or line of curvature .

The existence of such families Xrec(s, v), Xosc(s, v), or X1en(s, v) can be ensured via the proof of main
Theorem, so we obtain the following corollary.

Corollary 3.9. Given a unit speed regular curve γ(s) with non vanishing curvature and torsion. Then, there exists
a rectifying, an osculating or a generalized ruled surfaces family in which γ(s) its a common geodesic, asymptotic or
line of curvature directrix curve respectively.

Remark 3.10. According to the previous discussion, the ruled surfaces family parameterized by (18) whose common
directrix is a characteristic curve is one of the following:

1. A rectifying ruled surfaces family Xrec(s, v) (20) where the common directrix is a geodesic.
2. An osculating ruled surfaces family Xosc(s, v) (21) where the common directrix is an asymptotic.
3. A generalized ruled surfaces family X1en(s, v) (18) where the common directrix is a line of curvature.

Determining the type of a unit director vector field D(s) is enough to design ruled surfaces family with
a common geodesic or asymptotic directrix curve, this is the subject of the following proposition which its
proof is straightforward based on the main Theorem (3.1).

Proposition 3.11. Let X(s, v) be a ruled surfaces family (18), and let γ(s) be its common directrix curve and D(s) is
the unit director vector, then γ(s) is a common

1. geodesic directrix curve on X(s, v), if and only if D(s) is a rectifying director vector.
2. asymptotic directrix curve on X(s, v), if and only if D(s) is an osculating director vector.

Finally, this section ended with the following three theorems which clarify that there is an equivalent
between the type of ruled surfaces family, directrix curve, angular functions, and the unit director vector
field D(s).

Theorem 3.12. Let X(s, v) be a ruled surfaces family (18), and let γ(s) be its common directrix curve with non-
vanishing curvature and torsion. Then the followings are equivalent:

1. X(s, v) is a rectifying ruled surface family Xrec(s, v),
2. γ(s) is a common geodesic directrix curve,
3. cosφ(s) = 0,
4. D(s) is a rectifying director vector.

Theorem 3.13. Let X(s, v) be a ruled surfaces family (18), and let γ(s) be its common directrix curve with non-
vanishing curvature and torsion. Then the followings are equivalent:

1. X(s, v) is an osculating ruled surface family Xosc(s, v),
2. γ(s) is a common asymptotic directrix curve,
3. sinφ(s) = 0,
4. D(s) is an osculating director vector.

Theorem 3.14. Let X(s, v) be a ruled surfaces family (18), and let γ(s) be its common directrix curve with non-
vanishing curvature and torsion. Then the followings are equivalent:

1. γ(s) is a common line of curvature directrix curve,
2. φ(s) = −

∫ s

0 τds,
3. X(s, v) is a generalized ruled surface family X1en(s, v).
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4. Classification of developable ruled surfaces family with common characteristic curve

In this section, we give a classification of the developable ruled surfaces families whose directrix is
characteristic curve. In particular, we study under what conditions the three different families Xrec(s, v),
Xosc(s, v) and X1en(s, v) satisfying (30) are to be developable. Firstly, the developability condition (15) can be
explicitly written for a ruled surfaces family (18) as the following

Lemma 4.1. A ruled surfaces family (18) is a developable, if and only if the following condition is satisfied,

sinθ(s)(
dφ
ds

+ τ(s)) − κ(s) sinφ(s) cosθ(s) = 0. (33)

Proof. Using the developability condition (15), a ruled surfaces family (18) is developable, if and only if
det〈γ′,D,D′〉 = 0, since γ′(s) = t and D(s) = cosθ(s)t(s) + sinθ(s)(cosφ(s)n(s) + sinφ(s)b(s)), by taking the
derivative of D(s) and using the Frenet-Serret formula of γ(s), we get D′(s) = − sinθ(s)[κ(s) cosφ + dθ

ds ]t(s) +

[cosθ(s)(κ(s) + cosφ dθ
ds ) − sinθ(s) sinφ(s)( dφ

ds + τ)]n + [sinφ(s) cosθ(s) dθ
ds + sinθ(s) cosφ( dφ

ds + τ)]b. Then we
obtain det〈γ′,D,D′〉 = sinθ(s)( dφ

ds + τ(s)) − κ(s) sinφ(s) cosθ(s), this completes the proof of the lemma.

In [11], the author gave the above condition (33) by using a different technique. The following definition
and lemma are needed to study the developability of rectifying ruled surfaces family Xrec(s, v) (20).

Definition 4.2. For a rectifying vector D(s) = cosθ(s)t(s) + sinθ(s)b(s) defined along a unit speed regular curve
γ(s), we define a scalar function H(s) = κ(s) cosθ(s) − τ(s) sinθ(s) and we call it Darboux function of D(s) along
γ(s).

Lemma 4.3. Suppose that D(s) = cosθ(s)t(s) + sinθ(s)b(s) is a rectifying vector field defined along a unit speed
regular curve γ(s), then D(s) is a unit Darboux vector, if and only if H(s) vanishes.

Proof. Let D(s) = cosθ(s)t(s) + sinθ(s)b(s) be a unit Darboux vector. From (3), cosθ = τ
√

κ2+τ2
, sinθ(s) =

κ
√

κ2+τ2
. This implies that H(s) = κ cosθ − τ sinθ = 0, and vice versa.

The following theorem shows the developability condition for the Xrec(s, v), Xosc(s, v) and X1en(s, v) .

Theorem 4.4. Let X(s, v) be the ruled surfaces family of type Xrec(s, v), Xosc(s, v) or X1en(s, v) satisfying (30). Then,

1. A rectifying ruled surfaces family Xrec(s, v) is developable, if and only if the director vector is a unit Darboux
vector.

2. An osculating ruled surfaces family Xosc(s, v) is developable, if and only if the directrix curve is a plane curve .
3. A generalized ruled surfaces family X1en(s, v) satisfying (30) is developable, if and only if cosθ(s) = 0.

Proof. Using Lemma (2.4),

1. A ruled surfaces family (18) with a common directrix curve is of type Xrec(s, v) (20), if and only if
cosφ(s) = 0. Then the developability condition (33) turns into

τ(s) sinθ(s) − κ(s) cosθ(s) = 0. (34)

Using lemma (4.3), Xrec(s, v) is developable, if and only if the director vector is a unit Darboux vector.
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2. A ruled surfaces family (18) with a common directrix is of type Xosc(s, v) (21), if and only if sinφ(s) = 0,
this implies that the developability condition (33) becomes

sinθ(s)τ(s) = 0. (35)

Since sinθ(s) , 0 (regularity condition), then Xosc(s, v) is developable if and only if τ = 0, that is the
directrix curve is a plane curve.

3. Let X(s, v) be a ruled surfaces family of type X1en(s, v) that satisfying (30). After substitution, the
developabity condition (33) can be expressed as

κ(s) sinφ(s) cosθ(s) = 0. (36)

Since sinφ(s) , 0, and κ(s) , 0 (regular curve), then X1en(s, v) (18) is developable, if and only if
cosθ(s) = 0.

Based on the above theorem and its proof, we conclude the following equivalent theorem.

Theorem 4.5. Let X(s, v) be a ruled surfaces family of type Xrec(s, v), Xosc(s, v), or X1en(s, v) satisfying (30) . Then,

1. Darboux ruled surface XDar(s, v) (29) is the only member of the family of rectifying ruled surfaces Xrec(s, v)
(20), that is developable.

2. The family of osculating ruled surfaces Xosc(s, v) (21) that has plane directrix curve is developable. .
3. Normal ruled surface Xnor(s, v) (22) is the only member of the family of generalized ruled surfaces X1en(s, v)

satisfying (30), that is developable. .

Corollary 4.6. There is no family of developable ruled surfaces having parametrization (18) whose common directrix
curve is geodesic or line of curvature.

Remark 4.7. It is important to note that this result is restricted to parameterization (18) that uses the angular
functions as coefficients. When other different parameterizations are used, the family of developable ruled surfaces
whose common directrix curve is geodesic [14] or line of curvature [7] can be constructed by using marching-scale
functions instead of angular functions in (18).

Theorem 4.8. A family of developable surfaces whose common directrix is characteristic curve is an osculating ruled
surfaces family Xosc(s, v) (21) whose common directrix is asymptotic plane curve.

Remark 4.9. When the common asymptotic of the osculating ruled surfaces family Xosc(s, v) (21) is a plane curve,
then this family is the osculating planes of asymptotic plane curve.

Theorem 4.10. Let X(s, v) be a developable ruled surfaces family whose common directrix γ(s) is a characteristic
curve. Then, the following statements hold:

1. X(s, v) is neither generalized ruled surfaces family X1en(s, v) nor a rectifying ruled surfaces family Xrec(s, v) .
2. X(s, v) is an osculating ruled surfaces family Xosc(s, v).
3. The directrix curve γ(s) is a plane curve .
4. The common directrix curve γ(s) is asymptotic.
5. Xosc(s, v) is the family of osculating planes of γ(s).

Finally, we review a known result which characterizes Xpn(s, v) and Xb(s, v) with developability property.

Corollary 4.11. Let X be a ruled surface member of type Xpn(s, v) (27) or Xb(s, v) (28) then Xpn(s, v) and Xb(s, v) are
developable if and only if the directrix curve is a plane curve.
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5. Conclusion and future works

In this study, using parameterization (18), the family of ruled surfaces has been classified based on
its common characteristic directrix curve into three families: Rectifying ruled surfaces whose common
directrix is a geodesic, osculating ruled surfaces whose common directrix is an asymptotic, or generalized
ruled surfaces whose common directrix is a line of curvature. The three families converted into one family
under the developability condition. For future works, we will investigate how to extend these results to
other ambient spaces with different dimensions and using other frames.
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