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Özgür Erdağa, Ömür Devecib

aDepartment of Mathematics, Faculty of Science and Letters, Kafkas University 36100, Turkey
bDepartment of Mathematics, Faculty of Science and Letters, Kafkas University 36100, Turkey

Abstract. In this paper, we regard the Padovan-p Jacobsthal sequence and then we discuss the connection
of the Padovan-p Jacobsthal numbers and Jacobsthal numbers. Furthermore, we give the permanental,
determinantal, combinatorial, and exponential representations, and the sums of the Padovan-p Jacobsthal
numbers by the aid of the generating function and generating matrix of this sequence.

1. Introduction

The well-known Jacobsthal sequence {Jn} is defined by the following recurrence relation:

Jn = Jn−1 + 2Jn−2

for n ≥ 2 in which J0 = 0 and J1 = 1. It is easy to see that the characteristic polynomial of the Jacobsthal
sequence is j (x) = x2

− x − 2.

In [2], Aküzüm defined the Padovan-p Jacobsthal sequence
{
Jp
n

}
by the following homogeneous linear

recurrence relation for any given p (3, 4, 5, . . .) and n ≥ 0

Jp
n+p+4 = Jp

n+p+3 + 3Jp
n+p+2 − Jp

n+p+1 − 2Jp
n+p + Jp

n+2 − Jp
n+1 − 2Jp

n

in which Jp
0 = · · · = Jp

p+2 = 0 and Jp
p+3 = 1.
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Also in [2], she gave the generating matrix of the Padovan-p Jacobsthal sequence
{
Jp
n

}
as follows:

PJp =



1 3 −1 −2 0 · · · 0 1 −1 −2
1 0 0 0 0 · · · 0 0 0 0
0 1 0 0 0 · · · 0 0 0 0
0 0 1 0 0 · · · 0 0 0 0
0 0 0 1 0 · · · 0 0 0 0
0 0 0 0 1 · · · 0 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
0 0 0 0 0 · · · 1 0 0 0
0 0 0 0 0 · · · 0 1 0 0
0 0 0 0 0 · · · 0 0 1 0


(p+4)×(p+4).

The matrix PJp is entitled a Padovan-p Jacobsthal matrix. By an inductive argument, she obtained that

(
PJp

)n
=



Jp
n+p+3 Jp

n+p+4 − Jp
n+p+3 Pap

(
n + p + 3

)
− Jp

n+p+3 Pap
(
n + p + 4

)
− Jp

n+p+4 − Jp
n+p+3

Jp
n+p+2 Jp

n+p+3 − Jp
n+p+2 Pap

(
n + p + 2

)
− Jp

n+p+2 Pap
(
n + p + 3

)
− Jp

n+p+3 − Jp
n+p+2

Jp
n+p+1 Jp

n+p+2 − Jp
n+p+1 Pap

(
n + p + 1

)
− Jp

n+p+1 Pap
(
n + p + 2

)
− Jp

n+p+2 − Jp
n+p+1 PJ∗p

...
...

...
...

Jp
n+1 Jp

n+2 − Jp
n+1 Pap (n + 1) − Jp

n+1 Pap (n + 2) − Jp
n+2 − Jp

n+1
Jp
n Jp

n+1 − Jp
n Pap (n) − Jp

n Pap (n + 1) − Jp
n+1 − Jp

n


,

where PJ∗p is a
(
p + 4

)
×

(
p
)

matrix as follows:

PJ∗p =



Pap (n + 3) Pap (n + 4) · · · Pap
(
n + p

)
−Jp

n+p+2 − 2Jp
n+p+1 −2Jp

n+p+2

Pap (n + 2) Pap (n + 3) · · · Pap
(
n + p − 1

)
−Jp

n+p+1 − 2Jp
n+p −2Jp

n+p+1

Pap (n + 1) Pap (n + 2) · · · Pap
(
n + p − 2

)
−Jp

n+p − 2Jp
n+p−1 −2Jp

n+p
...

...
...

...
...

Pap
(
n − p + 1

)
Pap

(
n − p + 2

)
· · · Pap (n − 2) −Jp

n − 2Jp
n−1 −2Jp

n
Pap

(
n − p

)
Pap

(
n − p + 1

)
· · · Pap (n − 3) −Jp

n−1 − 2Jp
n−2 −2Jp

n−1


for n ≥ p.

In the literature, many authors studied number theoretic properties such as these obtained from homo-
geneous linear recurrence relations relevant to this paper; see for example, [5, 7, 8, 14, 15]. In [1, 3, 4, 10–
13, 16–20, 23], the authors defined some linear recurrence sequences and gave their various properties
by matrix methods. In this paper, we investigate the Padovan-p Jacobsthal sequence. Firstly, we discuss
connections between the Jacobsthal and Padovan-p Jacobsthal numbers. Furthermore, we derive the per-
manental and determinantal representations of the Padovan-p Jacobsthal numbers by using certain matrices
which are obtained from the generating matrix of this sequence. Finally, we acquire the combinatorial and
exponential representations and the sums of the Padovan-p Jacobsthal numbers by the aid of the generating
function and the generating matrix of this sequence.

2. Main Results

First, we derive a relationship between the above-described Padovan-p Jacobsthal sequence and Jacob-
sthal sequence.

Theorem 2.1. Let J (n) and Jp
n be the nth the Jacobsthal number and Padovan-p Jacobsthal numbers, respectively.

Then,
J (n) = Jp

n+p+2 − Jp
n+p − Jp

n

for n ≥ 0 and p ≥ 3.
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Proof. The assertion may be proved by induction method on n. It is clear that J (0) = Jp
p+2 − Jp

p − Jp
0 = 0.

Assume that the equation holds for n ≥ 1. Then we must show that the equation holds for n + 1. Since the
characteristic polynomial of the Jacobsthal sequence {J (n)}, is

j (x) = x2
− x − 2

we obtain the following relations:

J
(
n + p + 4

)
= J

(
n + p + 3

)
+ 3J

(
n + p + 2

)
− J

(
n + p + 1

)
− 2J

(
n + p

)
+ J (n + 2) − J (n + 1) − 2J (n)

for n ≥ 1. Hence, by a simple calculation, we have the conclusion.

Now we take into account the relationship between the Padovan-p Jacobsthal numbers and the perma-
nents of a certain matrix which is obtained using the Padovan-p Jacobsthal matrix

(
PJp

)n
.

Definition 2.2. A u × v real matrix M =
[
mi, j

]
is called a contractible matrix in the kth column (resp. row.) if the

kth column (resp. row.) contains exactly two non-zero entries.

Suppose that x1, x2, . . .,xu are row vectors of the matrix M. If M is contractible in the kth column such
that mi,k , 0,m j,k , 0 and i , j, then the (u − 1) × (v − 1) matrix Mi j:k obtained from M by replacing the ith

row with mi,kx j + m j,kxi and deleting the jth row. The kth column is called the contraction in the kth column
relative to the ith row and the jth row.

In [6], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order α > 1 and N is a
contraction of M.

Now we concentrate on finding relationships among the Padovan-p Jacobsthal numbers and the per-
manents of certain matrices which are obtained by using the generating matrix of this sequence. Let

FPa,J
m,p =

[
f (p)
i, j

]
be the m ×m super-diagonal matrix, defined by

f (p)
i, j =



3 if i = τ and j = τ + 1 for 1 ≤ τ ≤ m − 1,

1

if i = τ and j = τ for 1 ≤ τ ≤ m,
i = τ and j = τ + p + 1 for 1 ≤ τ ≤ m − p − 1

and
i = τ + 1 and j = τ for 1 ≤ τ ≤ m − 1,

−1
if i = τ and j = τ + 2 for 1 ≤ τ ≤ m − 2

and
i = τ and j = τ + p + 2 for 1 ≤ τ ≤ m − p − 2,

−2
if i = τ and j = τ + 3 for 1 ≤ τ ≤ m − 3

and
i = τ and j = τ + p + 3 for 1 ≤ τ ≤ m − p − 3,

0 otherwise.

,

for m ≥ p + 4. Then we have the following Theorem.

Theorem 2.3. For m ≥ p + 4,
perFPa,J

m,p = Jp
m+p+3.

Proof. Let us keep in view matrix FPa,J
m,p and let the equation be hold for m ≥ p + 4. Then we show that the

equation holds for m + 1. If we expand the perFPa,J
m,p by the Laplace expansion of permanent with respect to

the first row, then we obtain

perFPa,J
m+1,p = perFPa,J

m,p + 3perFPa,J
m−1,p − perFPa,J

m−2,p − 2perFPa,J
m−3,p + perFPa,J

m−p−1,p − perFPa,J
m−p−2,p − 2perFPa,J

m−p−3,p.
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Since
perFPa,J

m,p = Jp
m+p+3,

perFPa,J
m−1,p = Jp

m+p+2,

perFPa,J
m−2,p = Jp

m+p+1,

perFPa,J
m−3,p = Jp

m+p,

perFPa,J
m−p−1,p = Jp

m+2,

perFPa,J
m−p−2,p = Jp

m+1

and
perFPa,J

m−p−3,p = Jp
m,

we easily obtain that perFPa,J
m+1,p = Jp

m+p+4. So the proof is complete.

Let GPa,J
m,p =

[
1

(p)
i, j

]
be the m ×m matrix, defined by

1
(p)
i, j =



3 if i = τ and j = τ + 1 for 1 ≤ τ ≤ m − 2,

1

if i = τ and j = τ for 1 ≤ τ ≤ m,
i = τ and j = τ + p + 1 for 1 ≤ τ ≤ m − p − 2

and
i = τ + 1 and j = τ for 1 ≤ τ ≤ m − 2,

−1
if i = τ and j = τ + 2 for 1 ≤ τ ≤ m − 3

and
i = τ and j = τ + p + 2 for 1 ≤ τ ≤ m − p − 3,

−2
if i = τ and j = τ + 3 for 1 ≤ τ ≤ m − 4

and
i = τ and j = τ + p + 3 for 1 ≤ τ ≤ m − p − 3,

0 otherwise.

,

for m ≥ p + 4. Then we have the following Theorem.

Theorem 2.4. For m ≥ p + 4,
perGPa,J

m,p = Jp
m+p+2.

Proof. Let us keep in view matrix GPa,J
m,p and let the equation be hold for m ≥ p + 4. Then we show that the

equation holds for m + 1. If we expand the perGPa,J
m,p by the Laplace expansion of permanent with respect to

the first row, then we obtain

perGPa,J
m+1,p = perGPa,J

m,p + 3perGPa,J
m−1,p − perGPa,J

m−2,p − 2perGPa,J
m−3,p + perGPa,J

m−p−1,p − perGPa,J
m−p−2,p − 2perGPa,J

m−p−3,p.

Since
perGPa,J

m,p = Jp
m+p+2,

perGPa,J
m−1,p = Jp

m+p+1,

perGPa,J
m−2,p = Jp

m+p,

perGPa,J
m−3,p = Jp

m+p−1,
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perGPa,J
m−p−1,p = Jp

m+1,

perGPa,J
m−p−2,p = Jp

m

and
perGPa,J

m−p−3,p = Jp
m−1,

we easily obtain that perGPa,J
m+1,p = Jp

m+p+3. So the proof is complete.

Suppose that HPa,J
m,p =

[
h(p)

i, j

]
be the m ×m matrix, defined by

HPa,J
m,p =



(m − 1) th
↓

1 · · · 1 0
1
0 GPa,J

m−1,p
...
0


,

for m > p + 4, then we have the following results:

Theorem 2.5. For m > p + 4,

perHPa,J
m,p =

m+p+1∑
i=0

Jp
i .

Proof. If we extend per HPa,J
m,p with respect to the first row, we write

perHPa,J
m,p = perHPa,J

m−1,p + perGPa,J
m−1,p.

Thence, by the results and an inductive argument, the proof is easily seen.

A matrix M is called convertible if there is an n× n (1,−1)-matrix K such that perM = det (M ◦ K), where
M ◦ K denotes the Hadamard product of M and K.

Now we give relationships among the Padovan-p Jacobsthal numbers and the determinants of certain
matrices which are obtained by using the matrices FPa,J

m,p , GPa,J
m,p and HPa,J

m,p . Let m > p + 4 and let R be the m×m
Hadamard matrix, defined by

R =



1 1 1 · · · 1 1
−1 1 1 · · · 1 1

1 −1 1 · · · 1 1
...

. . .
. . .

. . .
. . .

...
1 · · · 1 −1 1 1
1 · · · 1 1 −1 1


.

Corollary 2.6. For m > p + 4,
det

(
FPa,J

m,p ◦ R
)

= Jp
m+p+3,

det
(
GPa,J

m,p ◦ R
)

= Jp
m+p+2

and

det
(
HPa,J

m,p ◦ R
)

=

m+p+1∑
i=0

Jp
i .
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Proof. Since perFPa,J
m,p = det

(
FPa,J

m,p ◦ R
)
, perGPa,J

m,p = det
(
GPa,J

m,p ◦ R
)

and perHPa,J
m,p = det

(
HPa,J

m,p ◦ R
)

for m > p + 4, by
Theorem 2.3, Theorem 2.4 and Theorem 2.5, we have the conclusion.

Let K (k1, k2, . . . , kv) be a v × v companion matrix as follows:

K (k1, k2, . . . , kv) =


k1 k2 · · · kv
1 0 · · · 0
...

. . .
. . .

...
0 · · · 1 0


.

For more details on the companion type matrices, see [21, 22].

Theorem 2.7. (Chen and Louck [9]) The
(
i, j

)
entry k(n)

i, j (k1, k2, . . . , kv) in the matrix Kn (k1, k2, . . . , kv) is given by
the following formula:

k(n)
i, j (k1, k2, . . . , kv) =

∑
(t1,t2,...,tv)

t j + t j+1 + · · · + tv

t1 + t2 + · · · + tv
×

(
t1 + · · · + tv

t1, . . . , tv

)
kt1

1 · · · k
tv
v (1)

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + vtv = n − i + j,
(t1+···+tv

t1,...,tv

)
=

(t1+···+tv)!
t1!···tv! is a

multinomial coefficient, and the coefficients in (1) are defined to be 1 if n = i − j.

Then we can give combinatorial representations for the Padovan-p Jacobsthal numbers by the following
Corollary.

Corollary 2.8. Let Jp
n be the nth the Padovan-p Jacobsthal number for n ≥ p. Then

i.

Jp
n =

∑
(t1,t2,...,tp+4)

(
t1 + t2 + · · · + tp+4

t1, t2, · · · , tp+4

)
3t2 (−1)t3+tp+3 (−2)t4+tp+4

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · +
(
p + 4

)
tp+4 = n − p − 3.

ii.

FPa,p
n = −

1
2

∑
(t1,t2,...,t4)

tp+4

t1 + t2 + · · · + tp+4
×

(
t1 + t2 + · · · + tp+4

t1, t2, · · · , tp+4

)
3t2 (−1)t3+tp+3 (−2)t4+tp+4

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · +
(
p + 4

)
tp+4 = n + 1.

Proof. If we take i = p + 4, j = 1 for the case i. and i = p + 3, j = p + 4 for the case ii. in Theorem 2.7, then we
can directly see the conclusions from

(
PJp

)n
.

The generating function of the Padovan-p Jacobsthal sequence
{
Jp
n

}
is obtained as follows:

1 (x) =
xp+3

1 − x − 3x2 + x3 + 2x4 − xp+2 + xp+3 + 2xp+4 ,

where p ≥ 3.
Then, with the following theorem, we can deliver an exponential representation for the Padovan-p

Jacobsthal numbers by the aid of the generating function.

Theorem 2.9. Let 1 (x) be generating function of the Padovan-p Jacobsthal numbers. The following exponential
representation for the Padovan-p Jacobsthal numbers as follows::

1 (x) = xp+3 exp

 ∞∑
i=1

(x)i

i

(
1 + 3x − x2

− 2x3 + xp+1
− xp+2

− 2xp+3
)i
 ,

where p ≥ 3.
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Proof. Since

ln 1 (x) = ln xp+3
− ln

(
1 − x − 3x2 + x3 + 2x4

− xp+2 + xp+3 + 2xp+4
)

and

− ln
(
1 − x − 3x2 + x3 + 2x4

− xp+2 + xp+3 + 2xp+4
)

= −[−x
(
1 + 3x − x2

− 2x3 + xp+1
− xp+2

− 2xp+3
)
−

1
2

x2
(
1 + 3x − x2

− 2x3 + xp+1
− xp+2

− 2xp+3
)2
− · · ·

−
1
i

xi
(
1 + 3x − x2

− 2x3 + xp+1
− xp+2

− 2xp+3
)i
− · · · ]

it is clear that

1 (x) = xp+3 exp

 ∞∑
i=1

(x)i

i

(
1 + 3x − x2

− 2x3 + xp+1
− xp+2

− 2xp+3
)i


by a simple calculation, we obtain the conclusion.

Now we consider the sums of the Padovan-p Jacobsthal numbers. Let

Tn =

n∑
i=0

Jp
i

for n ≥ p and p ≥ 3, and let KPa,J
p and

(
KPa,J

p

)n
be the

(
p + 5

)
×

(
p + 5

)
matrix such that

KPa,J
p =



1 0 0 · · · 0 0
1
0
... PJp
0
0


.

If we use induction on n, then we obtain

(
KPa,J

p

)α
=



1 0 0 · · · 0 0
Tn+p+2
Tn+p+1
... PJp

Tn
Tn−1


.

3. Conclusion

We considered a sequence called the Padovan-p Jacobsthal sequence, which is obtained using polynomi-
als characteristic of the Padovan p-sequence and the Jacobsthal sequence. Furthermore, using the generating
matrix of the Padovan-p Jacobsthal sequence, we obtained some new structural properties of the Padovan-p
Jacobsthal numbers such as the generating functions, the permanental, combinatorial, determinantal, and
exponential representations and the finite sums.



Ö. Erdağ, Ö. Deveci, / TJOS 6 (3), 134–141 141

References

[1] Akuzum Y. The Hadamard-type Padovan-p Sequences, Turkish Journal of Science. 5(2), 2020, 102−109.
[2] Akuzum Y. The Padovan-p Jacobsthal Numbers and Binet Formulas. 3. International Baku Scientific Research Congress. 15-16

October 2021, Baku Eurasıa University, Baku, Azerbaijan.
[3] Akuzum Y, Deveci O, Shannon AG. On the Pell p-circulant Sequences. Notes on Number Theory and Discrete Mathematics.

23(2), 2017, 91−103.
[4] Akuzum Y, Deveci O. The Arrowhead-Jacobsthal Sequences. Mathematica Montisnigri. Vol-LI, 2021, 31−44.
[5] Bradie B. Extension and refinements of some properties of sums involving Pell number. Missouri Journal of Mathematical

Sciences. 22(1), 2010, 37−43.
[6] Brualdi RA, Gibson PM. Convex polyhedra of doubly stochastic matrices I: applications of permanent function. Journal of

Combinatorial Theory, Series A. 22(2), 1977, 194−230.
[7] Cagman A. Explicit Solutions of Powers of Three as Sums of Three Pell Numbers Based on Baker’s Type Inequalities. Turkish

Journal of Inequalities. 5(1), 2021, 93−103.
[8] Cagman A, Polat K. On a Diophantine equation related to the difference of two Pell numbers. Contributions to Mathematics. 3,

2021, 37−42.
[9] Chen WYC, Louck JD. The combinatorial power of the companion matrix. Linear Algebra and its Applications. 232, 1996,

261−278.
[10] Deveci O. On the connections among Fibonacci, Pell, Jacobsthal and Padovan numbers. Notes on Number Theory and Discrete

Mathematics. 27(2), 2021, 111−128.
[11] Deveci O, Karaduman E. On the Padovan p-numbers. Hacettepe Journal of Mathematics and Statistics. 46(4), 2017, 579−592.
[12] Deveci O, Adiguzel Z, Akuzum Y. On the Jacobsthal-circulant-Hurwitz Numbers. Maejo International Journal of Science and

Technology. 14(1), 2020, 56−67.
[13] Erdag O, Deveci O. On The Connections Between Padovan Numbers and Padovan p-Numbers. International Journal of Open

Problems in Computer Science and Mathematics. 13(4), 2020, 33−47.
[14] Horadam A. Jacobsthal representations numbers. Fibonacci Quarterly. 34(1), 1996, 40−54.
[15] Horadam A. Applications of modified Pell numbers to representations. Ulam Quarterly. 3(1), 1994, 34−53.
[16] Kalman D. Generalized Fibonacci numbers by matrix methods. Fibonacci Quarterly. 20(1), 1982, 73−76.
[17] Kilic E. The Binet fomula, sums and representations of generalized Fibonacci p-numbers. European Journal of Combinatorics.

29(3), 2008, 701−711.
[18] Kilic E. The generalized Pell (p, i)-numbers and their Binet formulas, combinatorial representations, sums. Chaos, Solitons and

Fractals. 40(4), 2009, 2047−2063.
[19] Kilic E, Tasci D. The generalized Binet formula, representation and sums of the generalized order-k Pell numbers. Taiwanese

Journal of Mathematics. 10(6), 2006, 1661−1670.
[20] Koken F, Bozkurt D. On the Jacobsthal numbers by matrix methods. International Journal of Contemporary Mathematical

Sciences. 3(13), 2008, 605−614.
[21] Lancaster P, Tismenetsky M. The theory of matrices: with applications. Elsevier. 1985.
[22] Lidl R, Niederreiter H. Introduction to finite fields and their applications. Cambridge UP. 1986.
[23] Shannon AG, Erdag O, Deveci O. On the Connections Between Pell Numbers and Fibonacci p-Numbers. Notes on Number

Theory and Discrete Mathematics. 27(1), 2021, 148−160.


