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The Complex-type Pell p-Numbers in Finite Groups
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Abstract. In this study, we study the complex-type Pell p-numbers modulo m and further we get the periods
and the ranks of the complex-type Pell p-numbers modulo m. Additionally, we give some results on the
periods and the ranks of the complex-type Pell p-numbers modulo m. Then, we consider the multiplicative
orders of the complex-type Pell p-matrix when read modulo m. Also, we redefine the complex-type Pell
p-numbers by means of the elements of groups. Finally, we produce the periods of the complex-type Pell
2-numbers in the semidihedral group SD2m , (m ≥ 4).

1. Introduction

The complex-type Pell p-numbers for any given p
(
p = 2, 3, . . .

)
is defined [2] by the following recurrence

equation:
P∗p

(
n + p + 1

)
= 2ip+1

· P∗p
(
n + p

)
+ i · P∗p (n) (1)

for n ≥ 1, where P∗p (1) = · · · = P∗p
(
p
)
= 0, P∗p

(
p + 1

)
= 1 and

√
−1 = i.

In [2], the complex-type Pell p-matrix Kp had been given as:

Kp =


2ip+1 0 · · · 0 i

1 0 · · · 0 0
0 1 0 0
...

. . .
. . .

...
0 0 1 0


(p+1)×(p+1).

Then, for n ≥ p, they found that

(
Kp

)n
=



P∗p
(
n + p + 1

)
iP∗p (n + 1) iP∗p (n + 2) · · · iP∗p

(
n + p

)
P∗p

(
n + p

)
iP∗p (n) iP∗p (n + 1) · · · iP∗p

(
n + p − 1

)
...

...
...

...
P∗p (n + 2) iP∗p

(
n − p + 2

)
iP∗p

(
n − p + 3

)
· · · iP∗p (n + 1)

P∗p (n + 1) iP∗p
(
n − p + 1

)
iP∗p

(
n − p + 2

)
· · · iP∗p (n)


,

(2)

in addition, the determinant of the Kp matrix is (−1)p i.
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Definition 1.1. A sequence is well known to be periodic if after a certain point it consists only of repeats of a fixed
subsequence. A sequence is simply periodic with period k if the first k elements in the sequence form a repeating
subsequence.

For a finitely generated group G = 〈A〉, where A = {a1, a2, . . . , an }, the sequence xu = au+1, 0 ≤ u ≤ n − 1,

xn+u =
n∏

v=1
xu+v−1, u ≥ 0 is called the Fibonacci orbit of G with respect to the generating set A, denoted as

FA (G) in [6].
A k-nacci (k-step Fibonacci) sequence in a finite group is a sequence of group elements x0, x1, x2, . . ., xn,

. . .for which, given an initial (seed) set x0, x1, x2, . . ., x j−1, each element is defined by

xn =

{
x0x1 · · · xn−1 for j ≤ n < k,

xn−kxn−k+1 · · · xn−1 for n ≥ k.

The k-nacci sequence of a group G generated by x0, x1, x2, . . ., x j−1 is indicated by Fk

(
G; x0, x1, x2, . . . , x j−1

)
in [15].

In [9], Deveci and Shannon showed that the following conditions apply for every elements x, y of the
group G:

Definition 1.2. (i) Suppose that z = a+ ib such that a and b are integers and suppose that e is the identity of G, then
∗ xz
≡ xa(mod|x|)+ib(mod|x|) = xa(mod|x|)xib(mod|x|) = xib(mod|x|)xa(mod|x|) = xib(mod|x|)+a(mod|x|),

∗ xia =
(
xi
)a
= (xa)i,

∗ eu = e,
∗ x0+i0 = e.
(ii) Let z1 = a1 + ib1 and z2 = a2 + ib2 such that a1, b1, a2 and b2 are integers , then

(
xz1 yz2

)−1 = y−z2 x−z1 .
(iii) If xy , yx, then xiyi , yixi.

(iv)
(
xy

)i = yixi and
(
xiyi

)i
= x−1y−1.

(v) xyi = yix and so
(
xyi

)i
= xiy−1 and

(
xiy

)i
= x−1yi.

In [1, 3, 4, 8, 11, 16], the authors have produced the cyclic groups and the semigroups through some
special matrices and then, they have studied the orders of these algebraic structures. The study of the
recurrence sequences in groups began with the earlier work of Wall [21]. Also, the theory extended to
some special linear recurrence sequences by several authors; see for example, [5, 7, 10, 12–15, 17–20, 22].
In this study, we study the complex-type Pell p-numbers modulo m and then we get the periods and the
ranks of the complex-type Pell p-numbers modulo m. Then, we consider the multiplicative orders of the
complex-type Pell p-matrix when read modulo m. Also, we redefine the complex-type Pell p-numbers with
the elements of groups and then we give the periods of the complex-type Pell 2-numbers in the semidihedral
group.

2. The Complex-type Pell p-Numbers in Finite Groups

Reducing the complex-type Pell p-numbers by a modulus m, we obtain a repeating sequence, indicated
by {

P∗p,m (n)
}
=

{
P∗p,m (1) , P∗p,m (2) , . . . , P∗p,m

(
j
)
, . . .

}
where P∗p,m (n) = P∗p (n) (modm). This relation has the same recurrence relation as in (1)

Theorem 2.1. For p ≥ 2, the sequence
{
P∗p,m (n)

}
is simply periodic sequence.
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Proof. Consider the set

W =
{(

w1,w2, . . . ,wp+1

)
| wv’s are complex numbers av + ibv where

av and bv are integers such that 0 ≤ av, bv ≤ m − 1 and 1 ≤ v ≤ p + 1
}

.

Suppose that the notation |W| is the order of the set W. Since the set W is finite, there are |W| distinct
p+1-tuples of the complex-type Pell p-numbers modulo m. So, at least one of the p+1-tuples appears twice
in the sequence

{
P∗p,m (n)

}
. Then, the subsequence following this p + 1-tuple repeats; that is,

{
P∗p,m (n)

}
is a

periodic sequence. Let P∗p,m (k) ≡ P∗p,m (l), P∗p,m (k + 1) ≡ P∗p,m (l + 1), . . . , P∗p,m
(
k + p + 1

)
≡ P∗p,m

(
l + p + 1

)
and

k ≥ l, then k ≡ l
(
modp + 1

)
. It is obvious that

P∗p (n) = (−i) · P∗p
(
n + p + 1

)
+ 2ip+2

· P∗p
(
n + p

)
.

So we get P∗p,m (k − 1) ≡ P∗p,m (l − 1), P∗p,m (k − 2) ≡ P∗p,m (l − 2), . . . , P∗p,m (1) ≡ P∗p,m (k − l + 1), which indicates

that
{
P∗p,m (n)

}
is a simply periodic.

We indicate the period of the sequence
{
P∗p,m (n)

}
by tp (m).

For given a matrix B =
[
bi j

]
with bi j’s being integers, B (modm) means that each element of B are

reduced modulo m, that is, B (modm) =
(
bi j (modm)

)
. If (det B,m) = 1, then the set 〈B〉m is a cyclic group; if

(det B,m) , 1, then the set 〈B〉m is a semigroup. Let the notation |〈B〉m| indicates the order of the set 〈B〉m.
Since det Kp = (−1)p i, the set

〈
Kp

〉
m

is a cyclic group for every positive integer m ≥ 2. It is easy to see

from (2) that it is tp (m) =
∣∣∣∣〈Kp

〉
m

∣∣∣∣.
Theorem 2.2. Let v be a prime. If r is the smallest positive integer such that tp

(
vr+1

)
, tp (vr), then tp

(
vr+1

)
= vtp (vr)

for every integer p ≥ 2

Proof. Suppose that r is the smallest positive integer such that tp

(
vr+1

)
, tp (vr) and suppose that z is a

positive integer. If
(
Kp

)tp(vz+1)
≡ I

(
modvz+1

)
, then

(
Kp

)tp(vz+1)
≡ I (modvz). Thus we obtain that tp (vz) divides

tp

(
vz+1

)
. Also, writing

(
Kp

)tp(vz)
= I +

(
m(z)

i, j · v
z
)
, by the binomial theorem, we obtain

(
Kp

)vtp(vz)
=

(
I +

(
m(z)

i, j · v
z
))v
=

v∑
i=0

(
v
i

) (
m(z)

i, j · v
z
)i
≡ I

(
mod vz+1

)
.

and so it appears that tp

(
vz+1

)
divides v tp (vz). Therefore, tp

(
vz+1

)
= tp (vz) or tp

(
vz+1

)
= v tp (vz), and the latter

holds if and only if there is a m(z)
i, j which is not divisible by v. Since we assume that r is the smallest positive

integer such that tp

(
vr+1

)
, tp (vr), there is an m(z)

i, j that is not divisible by v. This shows that p

(
vr+1

)
= vtp (vr).

So, the proof is complete.

Definition 2.3. The rank of the sequence
{
P∗p,m (n)

}
is the least positive integer α such that P∗p,m (α) ≡ P∗p,m (α + 1) ≡

· · · ≡ P∗p,m
(
α + p − 1

)
≡ 0 (modm), and we indicate the rank of

{
P∗p,m (n)

}
by rp (m).

If P∗p,m
(
α + p − 1

)
≡ 0 (modm), then the terms of the sequence

{
P∗p,m (n)

}
starting with index rp (m), namely

0, 0, . . . , 0︸     ︷︷     ︸
p

, θ, θ, . . . , are exactly the initial terms of
{
P∗p,m (n)

}
multiplied by a factor θ.
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The exponents $ for which
(
Kp

)$
≡ I (modm) form a simple aritmetic progression. So we give(

Kp

)$
≡ I (modm)⇐⇒ tp (m) | $.

Similarly, the exponents $ for which
(
Kp

)$
≡ θI (modm) for some θ ∈ C form a simple aritmetic progression,

and so (
Kp

)$
≡ θI (modm)⇐⇒ rp (m) | $.

Thus, it is simple to show that rp (m) divides tp (m).

The order of the sequence
{
P∗p,m (n)

}
is defined by tp(m)

rp(m) and we indicate it by Qp (m). Let
(
Kp

)rp(m)
≡

θI (modm), then ordm (θ) is the least positive value of δ such that
(
Kp

)δrp(m)
≡ I (modm). So it is confirm that

ordm (θ) is the least positive integer δ with tp (m) | δrp (m). Thus, we obtain ordm (θ) = δ. As a result, we
may easily conclude that Qp (m) is always a positve integer, and that Qp (m) = ordm

(
P∗p

(
rp (m) + p

))
, the

multiplicative order of P∗p,m
(
rp (m) + p

)
.

Example 2.4. Since {
P∗5,2 (n)

}
= {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, i, 0, 0, 0, 0, 0, 1, 0, . . . , } ,

we have t5 (2) = 12, r5 (2) = 6 and Q5 (2) = 2.

Theorem 2.5. suppose that m1 and m2 are positive integers with m1,m2 ≥ 2, then rp (lcm [m1,m2]) = lcm
[
rp (m1) , rp (m2)

]
.

In the same way, tp (lcm [m1,m2]) = lcm
[
tp (m1) , tp (m2)

]
.

Proof. Let lcm [m1,m2] = m. Then

P∗p
(
rp (m)

)
≡ P∗p

(
rp (m) + 1

)
≡ · · · ≡ P∗p

(
rp (m) + p − 1

)
≡ 0 (modm)

and
P∗p

(
rp (mw)

)
≡ P∗p

(
rp (mw) + 1

)
≡ · · · ≡ P∗p

(
rp (mw) + p − 1

)
≡ 0 (modm)

for w = 1, 2. Using the least common multiple operation implies that P∗p
(
rp (m)

)
≡ P∗p

(
rp (m) + 1

)
≡ · · · ≡

P∗p
(
rp (m) + p − 1

)
≡ 0modmw for w = 1, 2. Hence we get rp (m1) | rp (m) and rp (m2) | rp (m), which signifies

that lcm
[
rp (m1) , rp (m2)

]
divides rp (lcm [m1,m2]). We also know that

P∗p
(
lcm

[
rp (m1) , rp (m2)

])
≡ P∗p

(
lcm

[
rp (m1) , rp (m2)

]
+ 1

)
≡ · · · ≡ P∗p

(
lcm

[
rp (m1) , rp (m2)

]
+ p − 1

)
≡ 0 (modmw)

for w = 1, 2. Then we can write

P∗p
(
lcm

[
rp (m1) , rp (m2)

])
≡ P∗p

(
lcm

[
rp (m1) , rp (m2)

]
+ 1

)
≡ · · · ≡ P∗p

(
lcm

[
rp (m1) , rp (m2)

]
+ p − 1

)
≡ 0 (modm) ,

and it follows that rp (lcm [m1,m2]) divides lcm
[
rp (m1) , rp (m2)

]
. Thus, the proof is complete.

The period tp (m) is proved with a similar proof method.

Now we take into account the complex-type Pell p-numbers in groups.
Suppose that G be a finite j-generator group and let X = {(x1, x2, . . . , x j) ∈ G × G × · · · × G︸             ︷︷             ︸

j

| <
{
x1, x2, . . . , x j

}
>=

G}. We call
(
x1, x2, . . . , x j

)
a generating j-tuple for G.
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Definition 2.6. Suppose that G is a j-generator group and suppose that
(
x1, x2, . . . , x j

)
is a generating j-tuple for G.

So we define the complex-type Pell p-orbit P∗p
(
G; x1, x2, . . . , x j

)
=

{
ap (n)

}
as shown:

ap
(
n + p

)
= ap (n − 1)i ap

(
n + p − 1

)2ip+1
(n > 1)

where {
ap (1) = x1, ap (2) = x2, . . . , ap

(
j
)
= x j, ap

(
j + 1

)
= e, . . . , ap

(
p + 1

)
= e if j < p + 1,

ap (1) = x1, ap (2) = x2, . . . , ap
(
p + 1

)
= xp+1 if j = p + 1.

Theorem 2.7. Suppose that G is a j-generator group. If G is finite, then the complex-type Pell p-orbit of G is periodic.

Proof. We think of the set

H =
{(

(h1)a1(mod|h1 |)+ib1(mod|h1 |) ,

(h2)a2(mod|h2 |)+ib2(mod|h2 |) , . . . ,(
h j

)a j(mod|h j|)+ib j(mod|h j|)
)

:

h1, h2, . . . , h j ∈ G and an, bn ∈ Z such that 1 ≤ n ≤ j
}

.

If G is finite, the H is a finite set. For any c ≥ 0, there exists k ≥ c + j such that ap (c + 1) = ap (k + 1),
ap (c + 2) = ap (k + 2), . . . , ap

(
c + j

)
= ap

(
k + j

)
. Due to repeating, for all generating j-tuples, the sequence

P∗p
(
G; x1, x2, . . . , x j

)
is periodic.

We indicate the length of the period of the complex-type Pell p-orbit P∗p
(
G; x1, x2, . . . , x j

)
by hP∗p

(
G; x1, x2, . . . , x j

)
.

Now we give the lengths of the periods of the complex-type Pell 2-orbit of the semidihedral group SD2m .
The semidihedral group SD2m of order 2m is defined by the presentation

SD2m = 〈x, y | x2m−1
= y2 = e, y−1xy = x−1+2m−2

〉

for every m ≥ 4. Note that the orders x and y are 2m−1 and 2, respectively.

Theorem 2.8. For generating pairs
(
x, y

)
, the length of the period of the complex-type Pell 2-orbit in the semidihedral

group SD2m is 2m−3
· t2 (2).

Proof. For the complex-type Pell 2-orbit, we consider t2 (2) = 6. The orbit P∗2
(
SD2m ; x, y

)
is

x, y, e, xi, yix2, x−4i, x−9, yx20i, x44,

x−97i, yix42, x−40i, x17, yx8i, x56, . . . ,

and so the orbit becomes:

a2 (1) = x, a2 (2) = y, a2 (3) = e, . . .
a2 (2 · t2 (2)α + 1) = x8αλ1+1, a2 (2 · t2 (2)α + 2) = yx4αλ2·i, a2 (2 · t2 (2)α + 3) = x4αλ3, . . . .

where λ1, λ2 and λ3 are positive integers such that 1cd (λ1, λ2, λ3) = 1. Thus, for β ∈N, we need the smallest
integer α such that 8α = 2m−1

· β . If we choose α = 2m−4, we get

a2

(
2m−3

· t2 (2) + 1
)
= x, a2

(
2m−3

· t2 (2) + 2
)
= y, a2

(
2m−3

· t2 (2) + 3
)
= e . . . .

Since the elements succeeding a2

(
2m−3

· t2 (2) + 1
)
, a2

(
2m−3

· t2 (2) + 2
)

and a2

(
2m−3

· t2 (2) + 3
)

depend on

x, y, e for their values, the cycle begins again with the a2

(
2m−3

· t2 (2) + 1
)

nd element. Thus it is verified that
the length of the period of the complex-type Pell 2-orbit in SD2m is 2m−3

· t2 (2).
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Example 2.9. The sequence P∗2
(
SD64; x, y

)
is

x, y, e, xi, yix2, x−4i, x−9, yx20i, x12, x−i, yix10,

x−8i, x17, yx8i, x24, xi, yx26, x4i, x7, yx12i, x20,

x−i, yix18, x16i, x, yx16i, x16, xi, yix18, x12i, x23,

yx4i, x28, x−i, yix26, x8i, x17, yx24i, x8, xi, yix10,

x20i, x7, yx28i, x4, x31i, yix2, e, x, y, e, . . . .

which implies that hP∗2
(
SD32; x, y

)
= 48.

3. Conclusion

In this study, we have considered the complex-type Pell p-numbers modulo m and then we have
obtained the periods and the ranks of the complex-type Pell p-numbers modulo m. Also, we have studied
the multiplicative orders of the complex-type Pell p-matrix when read modulo m. Finally, we have redefined
the complex-type Pell p-numbers with the elements of groups and then we have obtained the periods of
the complex-type Pell 2-numbers in the semidihedral group SD2m , (m ≥ 4).
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