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Abstract. In this paper, we study the complex-type Padovan-p sequence modulo m and then we give
some results concerning the periods and ranks of this sequence for any p and m. Furthermore, we produce
the cyclic groups using the multiplicative orders of the generating matrix of the complex-type Padovan-p
sequence when read modulo m. Finally, we give the relationships between the periods of the complex-type
Padovan-p sequence modulo m and the orders of the cyclic groups produced.

1. Introduction

It is well-known that the Padovan sequence {P (n)} is defined recursively by the equation:

P (n) = P (n − 2) + P (n − 3)

for n ≥ 3, where P (0) = P (1) = P (2) = 1.
The Padovan p-sequence

{
Pap (n)

}
is defined [6] by initial values Pap (1) = Pap (2) = · · · = Pap

(
p
)

= 0,
Pap

(
p + 1

)
= 1, Pap

(
p + 2

)
= 0 and the following homogeneous linear recurrence relation

Pap
(
n + p + 2

)
= Pap

(
n + p

)
+ Pap (n)

for any given p
(
p = 2, 3, 4, . . .

)
and n ≥ 1. Note that the (2n + 1) th term of the Padovan 2-sequence {Pa2 (n)},

is equal to nth Fibonacci number.
The complex-type Padovan p-sequence

{
Pa(i)

p (n)
}

is defined [11] as follows:

Pa(i)
p

(
n + p + 2

)
= i2 · Pa(i)

p
(
n + p

)
+ ip+2

· Pa(i)
p (n) (1)

for any given p
(
p = 3, 5, 7, . . .

)
and n ≥ 1, where Pa(i)

p (1) = · · · = Pa(i)
p

(
p
)

= 0, Pa(i)
p

(
p + 1

)
= 1, Pa(i)

p
(
p + 2

)
= 0

and
√
−1 = i.

A sequence is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. The
number of elements in the shortest repeating subsequence is called the period of the sequence. For example,
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Ö. Deveci, Ö. Erdağ / TJOS 6 (3), 156–161 157

the sequence a, b, c, d, b, c, d, b, c, d, . . . is periodic after the initial element a and has period 3. A sequence is
simply periodic with period k if the first k elements in the sequence form a repeating subsequence. For
example, the sequence a, b, c, d, a, b, c, d, a, b, c, d, . . . is simply periodic with period 4.

The study of the behavior of the linear recurrence sequences under a modulus began with the earlier
work of Wall [17] where the periods of the ordinary Fibonacci sequences modulo m were investigated.
Recently, the theory extended to some special linear recurrence sequences by several authors; see, for
example, [3, 4, 12, 15, 16]. In the first part of this paper, we consider the complex-type Padovan-p sequence
modulo m and then we derive some interesting results concerning the periods and ranks of the complex-type
Padovan-p sequence for any p and m.

The relationships between the periods of the linear recurrence sequences modulo m and the cyclic groups
which are produced using the multiplicative orders of the generating matrices of these sequences when
read modulo m have been studied recently by many authors; see, for example, [1, 2, 5, 7–10, 13, 14, 18].
In the second part, we derive the cyclic groups using the multiplicative orders of the generating matrix of
the complex-type Padovan-p numbers when read modulo m. Then, we give the relationships between the
periods of the complex-type Padovan-p sequence modulo m and the orders of the cyclic groups produced.

2. The Main Results

If we reduce the complex-type Padovan-p sequence
{
Pa(i)

p (n)
}

by a modulus m, taking least nonnegative
residues, then we get the following recurrence sequence:{

Pa(i,m)
p (n)

}
=

{
Pa(i,m)

p (0) , Pa(i,m)
p (1) , . . . ,Pa(i,m)

p
(
j
)
, . . .

}
where Pa(i,m)

p
(
j
)

is used to mean the jth element of the complex-type Padovan-p sequence when read modulo

m. We note here that the recurrence relations in the sequences
{
Pa(i,m)

p (n)
}

and
{
Pa(i)

p (n)
}

are the same.

Theorem 2.1. For any given p
(
p = 3, 5, 7, . . .

)
, the sequence

{
Pa(i,m)

p (n)
}

is simply periodic.

Proof. Consider the set

C =
{(

c1, c2, . . . , cp+2

)
| cn’s are complex numbers an + ibn where (2)

an and bn are integers such that 0 ≤ an, bn ≤ m − 1 and 1 ≤ n ≤ p + 2
}

. (3)

Let the notation |C| indicate the cardinality of the set C. Since the set C is finite, there are |C| distinct(
p + 2

)
-tuples of the complex-type Padovan-p numbers modulo m. Thus, it is clear that at least one of these(

p + 2
)
-tuples appears twice in the sequence

{
Pa(i,m)

p (n)
}
. Therefore, the subsequence following this

(
p + 2

)
-

tuple repeats; that is,
{
Pa(i,m)

p (n)
}

is a periodic sequence. Let us consider Pa(i,m)
p (u) ≡ Pa(i,m)

p (v), Pa(i,m)
p (u + 1) ≡

Pa(i,m)
p (v + 1), . . . , Pa(i,m)

p
(
u + p + 2

)
≡ Pa(i,m)

p
(
v + p + 2

)
and v ≥ u. Then we have v ≡ u

(
mod(p + 2)

)
. From the

recurrence relation in (1), we can write the following recursive equations:

Pa(i)
p (u) = i2−p

· Pa(i)
p

(
u + p + 2

)
+ i3−p

· Pa(i)
p

(
u + p

)
and

Pa(i)
p (v) = i2−p

· Pa(i)
p

(
v + p + 2

)
+ i3−p

· Pa(i)
p

(
v + p

)
.

So we get Pa(i,m)
p (u − 1) ≡ Pa(i,m)

p (v − 1), Pa(i,m)
p (u − 2) ≡ Pa(i,m)

p (v − 2), . . . , Pa(i,m)
p (2) ≡ Pa(i,m)

p (v − u + 2),
Pa(i,m)

p (1) ≡ Pa(i,m)
p (v − u + 1), which implies that the complex-type Padovan-p sequence modulo m is simply

periodic.
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Let the notation lPi
p (m) denote the smallest period of the sequence

{
Pa(i,m)

p (n)
}
.

Given an integer matrix A =
[
ai j

]
, A (modm) means that all entries of A are modulo m, that is, A (modm) =(

ai j (modm)
)
. Let us consider the set 〈A〉m =

{
(A)n (modm) | n ≥ 0

}
. If (det A,m) = 1, then the set 〈A〉m is a

cyclic group; if (det A,m) , 1, then the set 〈A〉m is a semigroup.
In [11], the generating matrix of the complex-type Padovan-p sequence had been given as:

Dp =
[
d(p)

jk

]
(p+2)×(p+2)

=



0 −1 0 · · · 0 0 ip+2

1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
...

. . .
. . .

. . .
. . .

...
...

0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0


.

The matrix Dp is said to be the complex-type Padovan-p matrix. Then they had been written the
following matrix relation: 

Pa(i)
p

(
n + p + 2

)
Pa(i)

p
(
n + p + 1

)
...

Pa(i)
p (n + 2)

Pa(i)
p (n + 1)


= Dp ·



Pa(i)
p

(
n + p + 1

)
Pa(i)

p
(
n + p

)
...

Pa(i)
p (n + 1)
Pa(i)

p (n)


.

It can be readily established by mathematical induction that for n ≥ p + 1,

(
Dp

)n
=



Pa(i)
p

(
n + p + 1

)
Pa(i)

p
(
n + p + 2

)
ip+2
· Pa(i)

p (n + 1) ip+2
· Pa(i)

p (n + 2) · · · ip+2
· Pa(i)

p
(
n + p

)
Pa(i)

p
(
n + p

)
Pa(i)

p
(
n + p + 1

)
ip+2
· Pa(i)

p (n) ip+2
· Pa(i)

p (n + 1) · · · ip+2
· Pa(i)

p
(
n + p − 1

)
Pa(i)

p
(
n + p − 1

)
Pa(i)

p
(
n + p

)
ip+2
· Pa(i)

p (n − 1) ip+2
· Pa(i)

p (n) · · · ip+2
· Pa(i)

p
(
n + p − 2

)
...

...
...

...
. . .

...

Pa(i)
p (n + 1) Pa(i)

p (n + 2) ip+2
· Pa(i)

p
(
n − p + 1

)
ip+2
· Pa(i)

p
(
n − p + 2

)
· · · ip+2

· Pa(i)
p (n)

Pa(i)
p (n) Pa(i)

p (n + 1) ip+2
· Pa(i)

p
(
n − p

)
ip+2
· Pa(i)

p
(
n − p + 1

)
· · · ip+2

· Pa(i)
p (n − 1)


.

(4)

Since det Dp = ip+2, the set
〈
Dp

〉
m

is a cyclic group for every positive integer m ≥ 2. From Theorem 2.1

and the equation (??), it is easy to see that lPi
p (m) =

∣∣∣∣〈Dp

〉
m

∣∣∣∣ for any given p
(
p = 3, 5, 7, . . .

)
.

Clearly,

ip+2 =

{
i, p ≡ −1 (mod4) ,
−i, p ≡ 1 (mod4) .

Since also det Dp = ip+2 and lPi
p (m) =

∣∣∣∣〈Dp

〉
m

∣∣∣∣,
(
ip+2

)lPi
p(m)

=
(
det Dp

)lPi
p(m)

= det D
lPi

p(m)
p ≡ 1 (modm) .

From this we see that 4
∣∣∣lPi

p (m) .

The rank of the sequence
{
Pa(i,m)

p (n)
}

is the least positive integer r such that Pa(i,m)
p (r + 1) ≡ Pa(i,m)

p (r + 2) ≡

Pa(i,m)
p

(
r + p

)
≡ 0(modm), Pa(i,m)

p
(
r + p + 1

)
≡ u(modm) (u ∈ C), Pa(i,m)

p
(
r + p + 2

)
≡ 0(modm), and we denote

the rank of
{
Pa(i,m)

p (n)
}

by RPi
p (m). If Pa(i,m)

p
(
r + p + 1

)
≡ u(modm) (u ∈ C), then the terms of the sequence
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Pa(i,m)

p (n)
}

starting with index RPi
p (m), namely 0, 0, . . . , 0︸     ︷︷     ︸

p

,u, 0,−u, 0,u, . . . , are exactly the initial terms of

{
Pa(i,m)

p (n)
}

multiplied by a factor u.

Let the notation I denote the identity matrix of size
(
p + 2

)
. The exponents n for which

(
Dp

)n
≡ I(modm)

form a simple aritmetic progression. Then we have(
Dp

)n
≡ I(modm)⇐⇒ lPi

p (m) | n.

Similarly, the exponents n for which
(
Dp

)n
≡ cI(modm) for some c ∈ C form a simple aritmetic progression,

and hence (
Dp

)n
≡ cI(modm)⇐⇒ RPi

p (m) | n.

Consequently, we can see that RPi
p (m) divides lPi

p (m) for any given p
(
p = 3, 5, 7, . . .

)
and m ≥ 3.

The order of the sequence
{
Pa(i,m)

p (n)
}
, (m ≥ 3) is defined by

lPi
p(m)

RPi
p(m) and we denote it by OPi

p (m). Let(
Dp

)RPi
p(m)
≡ cI(modm) (c ∈ C), then ordm (c) is the least positive value of λ such that

(
Dp

)λRPi
p(m)
≡ I(modm).

So it is confirm that ordm (c) is the least positive integer λ with lPi
p (m) | λRPi

p (m) for m ≥ 3. As a direct
consequence of this we see that the smallest such λ is OPi

p (m) for m ≥ 3. Therefore, we obtain OPi
p (m) =

ordm (c), (m ≥ 3) when
(
Dp

)RPi
p(m)
≡ cI(modm). As a result, we may easily deduce that OPi

p (m) is always

a positive integer, and that OPi
p (m) = ordm

(
Pa(i)

p

(
RPi

p (m) + p + 1
))

for m ≥ 3, the multiplicative order of

Pa(i,m)
p

(
RPi

p (m) + p + 1
)
.

Example 2.2. The sequence
{
Pa(i,2)

3 (n)
}

is as follows:
0, 0, 0, 1, 0, 1, 0, 1, i, 1, 0, 1, i, , 0, 0, 0, i, 1, i, 1, i,
0, 0, 1, i, 0, i, 0, 0, 1, 0, 0, 0, 0, i, 0, i, 0, i, 1, i, 0,
i, 1, 0, 0, 0, 1, i, 1, i, 1, 0, 0, i, 1, 0, 1, 0, 0, i, 0,

0, 0, 0, 1, 0, 1, 0, 1, i, . . . .


Thus it is verified that lPi

3 (2) = 62, RPi
3 (2) = 31 and OPi

3 (2) = 2.

Example 2.3. The sequence
{
Pa(i,4)

3 (n)
}

is as follows:
0, 0, 0, 1, 0, 3, 0, 1, i, 3, 2i, 1, 3i, 2, 0, 0, i, 1, i, 3, 3i, 0, 2i, 3, i, 2, 3i, 0, 0, 3, 2i,
2, 2i, 2, i, 0, i, 2, i, 1, 3i, 2, 3i, 1, 2i, 0, 0, 1, i, 1, 3i, 3, 2i, 0, 3i, 1, 0, 1, 0, 0, i, 0,

0, 0, 0, 3, 0, 1, 2i, 3, 3i, 1, 2i, 3, i, 2, 0, 0, 3i, 3, 3i, 1, i, 0, 2i, 1, 3i, 2, i, 0, 0, 1, 2i,
2, 2i, 2, 3i, 0, 3i, 2, 3i, 3, i, 2, i, 3, 2i, 0, 0, 3, 3i, 3, i, 1, 2i, 0, i, 3, 0, 3, 0, 0, 3i, 0,

0, 0, 0, 1, 0, 3, 0, 1, i, . . . .


Thus it is verified that lPi

3 (4) = 124, RPi
3 (4) = 62 and OPi

3 (4) = 2.

Theorem 2.4. Let ρ be a prime. Then we have the following results for any given p
(
p = 3, 5, 7, . . .

)
:

i. If t is the smallest positive integer such that lPi
p

(
ρt+1

)
, lPi

p
(
ρt), then lPi

p

(
ρt+1

)
= ρlPi

p
(
ρt).

ii. If t is the smallest positive integer such that RPi
p

(
ρt+1

)
, RPi

p
(
ρt), then RPi

p

(
ρt+1

)
= ρRPi

p
(
ρt).

Proof. i. Let n be a positive integer such that
(
Dp

)lPi
p(ρn+1)

≡ I(modρn+1). Then we can easily derive(
Dp

)lPi
p(ρn+1)

≡ I(modρn), which implies that lPi
p

(
ρn+1

)
is divided by lPi

p
(
ρn). On the other hand, we may
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write
(
Dp

)lPi
p(ρn)

= I +
((

d(p)
jk

)n
· ρn

)
. Thus, we get the following matrix equation by using binomial expansion

(
Dp

)ρ·lPi
p(ρn)

=
(
I +

((
d(p)

jk

)n
· ρn

))ρ
=

ρ∑
k=0

(
ρ

k

) ((
d(p)

jk

)n
· ρn

)k
≡ I

(
modρn+1

)
,

which yields that ρ · lPi
p
(
ρn) is divided by lPi

p

(
ρn+1

)
. Hence, lPi

p

(
ρn+1

)
= lPi

p
(
ρn) or lPi

p

(
ρn+1

)
= ρ · lPi

p
(
ρn),

and the latter holds if and only if there is a
(
d(p)

jk

)n
which is not divisible by ρ. Due to fact that we assume t

is the smallest positive integer such that lPi
p

(
ρt+1

)
, lPi

p
(
ρt), there is an

(
d(p)

jk

)n
which is not divisible by ρ.

This shows that lPi
p

(
ρt+1

)
= ρlPi

p
(
ρt).

ii. The proof is similar to the above and is omitted.

Theorem 2.5. Let m1 and m2 be positive integers with m1,m2 ≥ 2, then RPi
p (lcm [m1,m2]) = lcm

[
RPi

p (m1) ,RPi
p (m2)

]
and lPi

p (lcm [m1,m2]) = lcm
[
lPi

p (m1) , lPi
p (m2)

]
for any given p

(
p = 3, 5, 7, . . .

)
.

Proof. Let us consider the ranks RPi
p (m1) and RPi

p (m2). Suppose that lcm [m1,m2] = m. Then we may write

Pa(i)
p

(
RPi

p (m1) + 1
)
≡ Pa(i)

p

(
RPi

p (m1) + 2
)
≡ · · · ≡ Pa(i)

p

(
RPi

p (m1) + p
)
≡ 0(modm),

Pa(i)
p

(
RPi

p (m1) + p + 1
)
≡ u1(modm), Pa(i)

p

(
RPi

p (m1) + p + 2
)
≡ 0(modm),

Pa(i)
p

(
RPi

p (m2) + 1
)
≡ Pa(i)

p

(
RPi

p (m2) + 2
)
≡ · · · ≡ Pa(i)

p

(
RPi

p (m2) + p
)
≡ 0(modm),

Pa(i)
p

(
RPi

p (m2) + p + 1
)
≡ u2(modm), Pa(i)

p

(
RPi

p (m2) + p + 2
)
≡ 0(modm)

and
Pa(i)

p

(
RPi

p (m) + 1
)
≡ Pa(i)

p

(
RPi

p (m) + 2
)
≡ · · · ≡ Pa(i)

p

(
RPi

p (m) + p
)
≡ 0(modm),

Pa(i)
p

(
RPi

p (m) + p + 1
)
≡ u(modm), Pa(i)

p

(
RPi

p (m) + p + 2
)
≡ 0(modm)

where u1, u2 and u are complex numbers. Using the least common multiple operation this implies that

Pa(i)
p

(
RPi

p (m) + 1
)
≡ Pa(i)

p

(
RPi

p (m) + 2
)
≡ · · · ≡ Pa(i)

p

(
RPi

p (m) + p
)
≡ 0(modm j),

Pa(i)
p

(
RPi

p (m) + p + 1
)
≡ u(modm j), Pa(i)

p

(
RPi

p (m) + p + 2
)
≡ 0(modm j)

for j = 1, 2. So we get RPi
p (m1) | RPi

p (m) and RPi
p (m2) | RPi

p (m), which means that RPi
p (lcm [m1,m2]) is

divided by lcm
[
RPi

p (m1) ,RPi
p (m2)

]
. We also know that

Pa(i)
p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ 1

)
≡ Pa(i)

p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ 2

)
≡ · · · ≡ Pa(i)

p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ p

)
≡ 0(modm j),

Pa(i)
p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ p + 1

)
≡ u j(modm j), Pa(i)

p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ p + 2

)
≡ 0(modm j)

for j = 1, 2. Then we can write

Pa(i)
p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ 1

)
≡ Pa(i)

p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ 2

)
≡ · · · ≡ Pa(i)

p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ p

)
≡ 0(modm),

Pa(i)
p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ p + 1

)
≡ u(modm), Pa(i)

p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ p + 2

)
≡ 0(modm),

which yields that lcm
[
RPi

p (m1) ,RPi
p (m2)

]
is divided by RPi

p (lcm [m1,m2]). So we have the conclusion.
There is a similar proof for the periods lPi

p (m1) and lPi
p (m2).
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3. Conclusion

We have examined the complex-type Padovan-p sequence modulo m and then we give some results
concerning the periods and ranks of this sequence for any p and m. In addition, we have considered the
complex-type Padovan-p matrix and we obtained cyclic groups by taking the multiplicative order of this
matrix according to m. Finally, we have reached that the periods of the complex-type Padovan-p sequence
according to modulo m are equal to the order the cyclic groups obtained.
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