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Abstract. In this paper, we study the complex-type Padovan-p sequence modulo m and then we give
some results concerning the periods and ranks of this sequence for any p and m. Furthermore, we produce
the cyclic groups using the multiplicative orders of the generating matrix of the complex-type Padovan-p
sequence when read modulo m. Finally, we give the relationships between the periods of the complex-type
Padovan-p sequence modulo m and the orders of the cyclic groups produced.

1. Introduction
It is well-known that the Padovan sequence {P (n)} is defined recursively by the equation:
Pn)=Pn-2)+P(n-3)

forn >3,where P(0)=P(1)=P(2) =1.
The Padovan p-sequence {Pap (n)} is defined [6] by initial values Pap (1) = Pap(2) = --- = Pap(p) = 0,
Pap(p+1) =1, Pap (p + 2) = 0 and the following homogeneous linear recurrence relation

Pap(n+p +2) = Pap(n + p) + Pap (n)

for any givenp(p = 2,3,4,...) and n > 1. Note that the (21 + 1) th term of the Padovan 2-sequence {Pa2 (n)},
is equal to nth Fibonacci number.

The complex-type Padovan p-sequence {Pag) (n)} is defined [11] as follows:
Pa;f) (n+p+2)=i- Pa;f) (n+p)+ "> -Pa;,i) (n) (1)

for any given p(p =3,5,7,...) and n > 1, where Pa;f) H=---= Pa;f) (p)=0, Pa;") p+1)=1, Pa;,i) (p+2)=0
and V-1 =i.

A sequence is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. The
number of elements in the shortest repeating subsequence is called the period of the sequence. For example,
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the sequence a,b,c,d,b,c,d,b,c,d, ... is periodic after the initial element 2 and has period 3. A sequence is
simply periodic with period k if the first k elements in the sequence form a repeating subsequence. For
example, the sequencea,b,c,d,a,b,c,d,a,b,c,d, ... is simply periodic with period 4.

The study of the behavior of the linear recurrence sequences under a modulus began with the earlier
work of Wall [17] where the periods of the ordinary Fibonacci sequences modulo m were investigated.
Recently, the theory extended to some special linear recurrence sequences by several authors; see, for
example, [3, 4, 12, 15, 16]. In the first part of this paper, we consider the complex-type Padovan-p sequence
modulo m and then we derive some interesting results concerning the periods and ranks of the complex-type
Padovan-p sequence for any p and m.

The relationships between the periods of the linear recurrence sequences modulo m and the cyclic groups
which are produced using the multiplicative orders of the generating matrices of these sequences when
read modulo m have been studied recently by many authors; see, for example, [1, 2, 5, 7-10, 13, 14, 18].
In the second part, we derive the cyclic groups using the multiplicative orders of the generating matrix of
the complex-type Padovan-p numbers when read modulo m. Then, we give the relationships between the
periods of the complex-type Padovan-p sequence modulo m and the orders of the cyclic groups produced.

2. The Main Results

If we reduce the complex-type Padovan-p sequence {Pa;i) (n)} by a modulus m, taking least nonnegative
residues, then we get the following recurrence sequence:

{Pal™ (n)} = {Pal™ (0), Pa{™ (1), ..., Pal™ (j), ...}

where Pa;f ) (j) is used to mean the jth element of the complex-type Padovan-p sequence when read modulo

m. We note here that the recurrence relations in the sequences {Pa;f’m) (n)} and {Pag) (n)} are the same.

Theorem 2.1. For any given p(p = 3,5,7,...), the sequence {Pag”") (n)} is simply periodic.
Proof. Consider the set

C = {(cl,cz, ... ,cp+2) | ¢,’s are complex numbers a, + ib, where (2)

a, and b, are integers such that 0 <a,,b, <m—-land1<n<p+2}. 3)

Let the notation |C| indicate the cardinality of the set C. Since the set C is finite, there are |C| distinct
(p + 2)-tuples of the complex-type Padovan-p numbers modulo m. Thus, it is clear that at least one of these

(p + 2)-tuples appears twice in the sequence {Pag’m) (n)}. Therefore, the subsequence following this (p + 2)-
tuple repeats; that is, {Pag’"') (n)} is a periodic sequence. Let us consider Pa;f’m) (u) = Pa;f’m) (v), Pa;(f’m) wu+1)=

Pa;f’m) (v+1),..., Pa;f’m) (u+p+2)= Pa;f’m) (v+p+2)and v > u. Then we have v = u (mod(p + 2)). From the
recurrence relation in (1), we can write the following recursive equations:

Pag) (u) =7 Pa;(f) (+p+2)+ 3P ~Pag) (u+p)

and
Pag) (v) = > 'Pa;f) (v+p+2)+i7 'Pa;f) (v+p).

So we get Paff’m) u-1) = Pa;f’m) (v-1), Pa;,i’m) wu-2) = Pa;f’m) w=2), ..., Pag’m) ) = PaS’m) (v—u+2),
Pa;f’m) 1= Pa;f’m) (v — u + 1), which implies that the complex-type Padovan-p sequence modulo m is simply
periodic. O
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Let the notation lPi, (m) denote the smallest period of the sequence {Pasm) (n)}.
Given an integer matrix A = [aij], A (modm) means that all entries of A are modulo m, thatis, A (modm) =
(a,-]- (modm)). Let us consider the set (A),, = {(A)" (modm) | n > 0}. If (detA,m) = 1, then the set (A),, is a

cyclic group; if (det A, m) # 1, then the set (A),, is a semigroup.
In [11], the generating matrix of the complex-type Padovan-p sequence had been given as:

[0 -1 0 0 0 2]
1 0 0 00 0
01 0 00 0
DP:P@] |0 0 1 0 0 0
I (pe2)x(p+2) .
00 0 1 0
00 0 01 0

The matrix D, is said to be the complex-type Padovan-p matrix. Then they had been written the
following matrix relation:

>Pas)(n+p+2)— >Pas)(n+p+1)—
Pal(,l) (n+p+1) Pa;f) (n+p)
‘ : =Dy- ‘ :
Pa’(;) (n+2) Pa’(;) (n+1)
Pa’(;) n+1) | | Pag) (n)

It can be readily established by mathematical induction that forn > p + 1,

[ Pa;,o (n+p+1) Pa;,’:) (n+p+2) i”*z-Pa;j) (n+1) ip+2.p,1;7’:) (n+2) iP+2-Pq;j) (n+p)
Pu;’) (n+p) Pa;,’) (n+p+1) 2. Pa;,o (n) 2. Pu;,’) n+1) s P2 Pu;,’) (n+p-1)
(D )n ~ Pu;,o (n+p-1) Pu;,') (n+p) 2. Pa;,’) (n-1) P2 Pa;,’) (n) s P2 Pu;,’) n+p-2) W
p) = . . . . .
W, oy pe2 . pa) ps2 . pal) ' 32 po)
Pay, n+1) Pay, n+2) v - Pa,, m-p+1) # - Pay, m-p+2) - i - Pay, (n)
Pu;f) (n) Pa;,o n+1) P+2 -Pa;,l) (n—p) P2 Pa}(;) m-p+1) - P2 -Pa;,') n-1)

Since det D, = #*?, the set <D’”>m is a cyclic group for every positive integer m > 2. From Theorem 2.1

and the equation (??), it is easy to see that IP;'J (m) = '(D”>m| for any givenp (p = 3,5,7,...).

Clearly,
w2 _ )0 = —1 (mod4),
PUT) <, p=1(mod4).

7

Since also det D, = i"*? and IP;, (m) = |<DF’>

m

1P (m)

(i” +2>1P;;(m) _ (det Dp)lP;;(m) — det Dp " = 1 (modm) .

From this we see that 4 |ZP;'J (m).

The rank of the sequence {Pag’m) (n)} is the least positive integer r such that Pag’m) (r+1) = Pag’"’) (r+2) =
Pa;f’m) (r +p) = O(modm), Pa;f’m) (r+p+1) = u(modm) (u € C), PaS’m) (r+p +2) = 0(modm), and we denote
the rank of {PaS’m) (n)} by RP;, (m). If Pa;f’m) (r+p+1) = u(modm) (u € C), then the terms of the sequence
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{Pag’"’) (n)} starting with index RP;, (m), namely 0,0,...,0,u,0,-u,0,u,..., are exactly the initial terms of
——
P

{Paff’m) (n)} multiplied by a factor u.
Let the notation I denote the identity matrix of size (p + 2). The exponents n for which (Dp)n = [(modm)
form a simple aritmetic progression. Then we have

(D,,)}7 = I(modm) ZP;, (m) | n.

Similarly, the exponents n for which (Dp)n = cl(modm) for some ¢ € C form a simple aritmetic progression,

and hence " )
(Dp) = cl(modm) < RP;j (m) | n.

Consequently, we can see that RP;, (m) divides IP;, (m) for any givenp (p = 3,5,7,...) and m > 3.

The order of the sequence {Pag’m) (n)}, (m > 3) is defined by % and we denote it by OP;', (m). Let
RP, () . . ’ ARPY (m)
(D,,) = cl(modm) (c € C), then ord,, (c) is the least positive value of A such that (Dp) = I(modm).

So it is confirm that ord,, (c) is the least positive integer A with ZP; (m) | /\RP; (m) for m > 3. As a direct
consequence of this we see that the smallest such A is OP,, (m) for m > 3. Therefore, we obtain OP,, (m) =
ordy ), (m = 3) when (D,)"""”
a positive integer, and that OP]’;, (m) = ord,, (Pag) (RP;7 (m)+p+ 1)) for m > 3, the multiplicative order of
Pay™ (RP; (m) + p +1).

= cl(modm). As a result, we may easily deduce that OP;7 (m) is always

Example 2.2. The sequence {Pa(;z) (n)} is as follows:

0,00101,01,41,0,1,4,0,0,0,i,1,i,1,4,
0,01,40,40,0,1,0,0,0,0,7,0,:,0,7,1,,0,
1,0001,41,i1,0,0,41,0,1,0,0,40,
0,001,01,0,1,5,....

Thus it is verified that IP% (2) = 62, RP; (2) = 31 and OP} (2) = 2.
Example 2.3. The sequence {Pa(;"l) (n)} is as follows:

0,001,0,3,0,1,43,2,1,3,2,0,0,i,1,4,3,31,0,24,3,1,2,3i,0,0, 3, 2i,
2,24,2,i,0,1,2,1,1,3,2,3i,1,2i,0,0,1,4,1, 34,3,24,0,341,0,1,0,0, 1,0,
0,00,3,01,243,3;1,23,i,2,0,0,3i,3,3i,1,4,0,21,1,3,2,1,0,0,1, 2,
2,24,2,3i,0,31,2,3i,3,1,2,i,3,2i,0,0,3,34,3,i,1,2i,0,4,3,0,3,0,0, 31,0,
0,0,01,0,3,0,1,4....

Thus it is verified that IP% (4) = 124, RP%, (4) = 62 and OP,, (4) = 2.
Theorem 2.4. Let p be a prime. Then we have the following results for any given p (p = 3,5,7,...):

i. If t is the smallest positive integer such that P}, (pt“) # 1P}, (p"), then IP}, (pt“) = plP;, (p").
ii. If t is the smallest positive integer such that RP,, (p”l) # RP;, (p"), then RP, (p”l) = pRP, (p").

1P (o1
Proof. i. Let n be a positive integer such that (Dp) o) = I(modp™'). Then we can easily derive

1Pi (o1 . X
(Dp) 7o) = I(modp"), which implies that [P, (p”“) is divided by IP, (p"). On the other hand, we may
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IPI 1 n
write ( ) (") =1+ ((d](: )) . p"). Thus, we get the following matrix equation by using binomial expansion

(Dp)pzp,a(p"):(H(( (p)) )) ZPZ( )(( (p)) )E (modp™?),

k=0
which yields that p - IP}, (p") is divided by IP,, (p”“). Hence, IP,, (p”“) = 1P, (p") or IP,, (p””) =p- 1P, (p"),
and the latter holds if and only if there is a (d](;: )) which is not divisible by p. Due to fact that we assume ¢

is the smallest positive integer such that lP;, (pt”) * IP;‘7 (p"), there is an (dj(.;: )) which is not divisible by p.

This shows that IP,, (p”l) = pIP} (p").
ii. The proof is similar to the above and is omitted. [

Theorem 2.5. Let my and m; be positive integers withmy, my > 2, then RP;, (Iem [my1, my]) = Iem [RP; (m), RP;, (mz)]
and ZP;7 (Iem [my, my]) = Iem [ZP;, (m), ZP;, (mz)]for any given p (p = 3,5,7,...).

Proof. Let us consider the ranks RP;7 (mq) and RP;, (my). Suppose that Iem [m;,m;] = m. Then we may write
Pa) (RP, (my) + 1) = Paf) (RP., (m1) +2) = - - = Pa}) (RP} (m1) + p) = O(modm),

Paf) (RP}, (m) + p + 1) = w1 (modm), Paf) (RP, (m1) + p + 2) = O(modm),

Pa) (RP} (m2) + 1) = Pal) (RP', (my) + 2) = -+ = Pal) (RP}, (my) + p) = O(modm),
Paf) (RP}, (m3) + p + 1) = uz(modm), Pafy (RP, (m2) + p +2) = 0(modm)

d
" Pa) (RP, (m) +1) = Pa) (RP, (m) + 2) = -+ = Pa) (RP’, (m) + p) = O(modm),

Pa;(? (RP;, (m)+p+ 1) = u(modm), Pa;f) (RP;, (m)+p+ 2) = O(modm)
where u1, u; and u are complex numbers. Using the least common multiple operation this implies that
Paf) (RP (m) + 1) = Paf) (RP, (m) + 2) = -+ = Paf) (RP’, (m) + p) = 0(modm}),

P (R -+ -+1) = s, e (R85 0+ +2) = Ot

for j = 1,2. So we get RP;, (m1) | RP} (m) and RP;, (m3) | RP,, (m), which means that RP,, (Ien [my, my]) is
divided by lcm [RP; (my), RP; (mz)] We also know that

Pa;,i) (lcm [RP;, (1111),RP;7 (mz)] + 1) = Pug) (lcm [RP;, (mq) ,RP;, (mz)] + 2) =...= Pa;j) (lcm [RP;, (ml),RP;7 (mz)] + p) = O(modmj),

Pay (1em [RP (1), R} ()] + p + 1) = wj(modny), Paf) (1em [RP} (m), RP; (ms)] + p +2) = O(madm;)
for j = 1,2. Then we can write

Pa;') (lcm [RP;, (mq) ,RP;, (mz)] + 1) = Pa}(f) (lcm [RP;j (ml),RP;7 (mz)} + 2) =...= Pa;,o (lcm [RP; (ml)/RP;; (7712)] + P) = 0(modm),

Pa;f) (lcm [RP;, (my) ,RP;J (mz)] +p+ 1) = u(modm), Pag) (lcm [RP;, (my) ,RP;, (mz)] +p+ 2) = 0(modm),

which yields that lcm [RP; (m), RP; (mz)] is divided by RP;, (Iem [m1, ms]). So we have the conclusion.
There is a similar proof for the periods IP;, (1) and IP,, (my). O
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3. Conclusion

We have examined the complex-type Padovan-p sequence modulo m and then we give some results
concerning the periods and ranks of this sequence for any p and m. In addition, we have considered the
complex-type Padovan-p matrix and we obtained cyclic groups by taking the multiplicative order of this
matrix according to m. Finally, we have reached that the periods of the complex-type Padovan-p sequence
according to modulo m are equal to the order the cyclic groups obtained.
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