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A Logarithmic Finite Difference Method for Numerical Solutions of the
Generalized Huxley Equation
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aKafkas University, Faculty of Science and Letters, Department of Mathematics, 36100, Kars, Turkey.

Abstract. In this paper, numerical solutions of generalized Huxley equation are obtained by using a new
scheme: Implicit logarithmic finite difference method (I-LFDM). The efficiency of the presented method is
illustrated by a numerical example for different cases of parameters which confirm that obtained results
are in good agreement with the exact solutions and numerical solutions obtained by some other methods
in literature. The method is analyzed by von-Neumann stability analysis method and it is displayed that
the method is unconditionally stable.

1. INTRODUCTION

Nonlinear partial differential equations are often used to model most of the problems in various fields
such as physics, chemistry, biology, mathematics and engineering. One of these nonlinear partial differential
equations is generalized Huxley equation.
The generalized Huxley equation

∂u
∂t
−
∂2u
∂x2 = βu

(
1 − uδ

) (
uδ − γ

)
, a < x < b, t > 0 (1)

with initial condition
u (x, 0) = f (x), a < x < b

and boundary conditions
u(a, t) = 11 (t) , u(b, t) = 12 (t) , t > 0

describes the propagation of a nerve impulse in nerve fibers and the movement of the wall in liquid crystals.
Where f (x), 11(t) and 12(t) are known functions, δ, β ≥ 0and γ ∈ (0.1)are given parameters.
Various numerical methods have been used to solve the equation (1) numerically by many researchers.
Hashim et. al. [9] applied the Adomian decomposition method to solve the equation numerically. Vari-
ational iteration method (VIM) has been used to obtain the numerical solutions of the equation by Batiha
et. al. [2]. Hashemi et. al. [8] used the homotopy perturbation method (HPM) and then Hemida and
Mohamed [10] used the homotopy analysis method (HAM) for obtaining the numerical solutions of the
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equation. Inan [12, 13] used the explicit exponential finite difference method and implicit exponential finite
difference method (I-EFDM) to solve the equation.
In this study, we present the implicit logarithmic finite difference method to obtain the numerical solutions
of the generalized Huxley equation. Logarithmic finite difference methods have been used to solve various
equations in literature. İsmail and Al-Basyoni [14] used the closed logarithmic finite difference method to
solve the Troesch problem numerically. Srivastava et al. [16] used the closed logarithmic finite difference
method to solve two-dimensional Burgers equation systems. The one-dimensional coupled Burgers equa-
tion was solved by Srivastava et al. [15] using the closed logarithmic finite difference method. Aljaboori
[1] used the Crank-Nicolson logarithmic finite difference method to solve the combined Burgers equation
numerically. El-Azab et al. [7] obtained numerical solutions of the Korteweg de Vries Burger (KdVB) equa-
tion using the open logarithmic finite difference method. Celikten et. al. [3] used the explicit logarithmic
finite difference schemes to solve the Burgers equation. Modified Burgers equation as solved by Celikten
[4] using the explicit logarithmic finite difference schemes. Celikten [5] obtained the numerical solutions
of Burgers equation by using implicit and fully implicit logarithmic finite difference methods. Celikten
and Sürek [6] used the explicit logarithmic finite difference method to solve the generalized Burgers-Fisher
equation numerically.

2. MATERIALS AND METHODS

2.1. IMPLICIT LOGARITHMIC FINITE DIFFERENCE METHOD

We demonstrate the finite difference approximation of u(x, t)at the node point (xi, tn) by un
i in which

xi = ih(i = 0, 1, . . . ,N), tn = t0 + nk(n = 0, 1, 2, . . .), h = b−a
N is the node size in x direction and kis the time step.

We reorganize Equation (1) to acquire

∂u
∂t
= βu

(
1 − uδ

) (
uδ − γ

)
+
∂2u
∂x2 . (2)

Multiplying equation (2) by eu, we acquire the following equation:

∂eu

∂t
= eu

(
βu

(
1 − uδ

) (
uδ − γ

)
+
∂2u
∂x2

)
(3)

using the finite difference approximations for derivatives in Equation (3) the following implicit logarithmic
finite difference scheme is acquired
I-EFDM

un+1
i = un

i + ln

1 + k

βun
i

(
1 −

(
un

i

)δ) ((
un

i

)δ
− γ

)
+

un+1
i+1 − 2un+1

i + un+1
i−1

h2


 (4)

where 1 ≤ i ≤ N − 1.
Equation (4) is a system of nonlinear difference equations. We assume this nonlinear system of equations
in the form

G(W) = 0 (5)

where G =
[
11, 12, . . . , 1N−1

]T and W =
[
un+1

1 ,u
n+1
2 , . . . ,u

n+1
N−1

]T
. The nonlinear Equation (5) is linearized using

Newton’s iterative approach, which yields the following iteration:
1) Determine W(0), a first guess.
2) For m = 0, 1, 2, 3 . . .up to convergency do:

Resolve J
(
W(m)

)
δ(m) = −G

(
W(m)

)
;

Adjust W(m+1) = W(m) + δ(m) where J(W(m)) the Jacobian matrix which is appraised analytically. The initial
estimate is based on the solution from the previous time step. The Newton iteration is halted at every time
step when

∥∥∥G(W(m))
∥∥∥ ≤ 10−5.
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2.2. LOCAL TRUNCATION ERROR AND CONSISTENCY

In order to analyze the local truncation errors of the numerical scheme (4), the nonlinear term of the

scheme has been linearized by replacing the quantity
(
un

i

)δ
by local constant Ũ. Hence the numerical scheme

(4), convert into

un+1
i = un

i + ln

1 + k

βun
i

(
1 − Ũ

) (
Ũ − γ

)
+

un+1
i+1 − 2un+1

i + un+1
i−1

h2


 (6)

Since the scheme (6) is logarithmic, the examination will be improved by expanding the logarithmic term of
the scheme into a Taylor’s series. Hilal et al. [11] applied the same procedure to calculate the local truncation
error of exponential finite difference schemes and examine their stability. If the scheme’s logarithmic term
is expanded to a Taylor series and the first term is used, the scheme can be expressed as:

un+1
i = un

i + kβun
i

(
1 − Ũ

) (
Ũ − γ

)
+ k

un+1
i+1 − 2un+1

i + un+1
i−1

h2

 (7)

Expansion of the terms un+1
i , un+1

i+1 and un+1
i−1 about the point (xi, tn)by Taylor’ s series and substitution into

Tn
i = un+1

i − un
i − kβun

i

(
1 − Ũ

) (
Ũ − γ

)
− k

un+1
i+1 − 2un+1

i + un+1
i−1

h2


leads to

Tn
i =

[
∂u
∂t
− βu

(
1 − Ũ

) (
Ũ − γ

)
−
∂2u
∂x2

]n

i
+

k
2

(
∂2u
∂t2

)n

i
−

h2

12

(
∂4u
∂x4

)n

i
+ ...

Therefore the principal part of the local truncation error is as follows:

k
2

(
∂2u
∂t2

)n

i
−

h2

12

(
∂4u
∂x4

)n

i

Hence the local truncation error is Tn
i = O (k) +O

(
h2

)
Since lim

h,k→0

[
O (k) +O

(
h2

)]
= 0 presented scheme is consistent. And the scheme is first order in time and

second order in space.

2.3. STABILITY ANALYSIS

We will utilize the von Neumann stability analysis to analyze the scheme’s stability, where the growth
factor of a characteristic Fourier mode is specified as follows:

un
i = ε

neIϕih, I =
√

−1. (8)

von Neumann stability analysis is used to analyze the stability of finite difference schemes applied to
linear partial differential equations. So we will investigate the stability of linear form of the scheme. By
substituting the (8) equality into the (7) linear form of the scheme, we get the growth factors as follows:

ε =
1 + kβ

(
1 − Ũ

) (
Ũ − γ

)
1 + 2k

h2 sin2 ϕh
2

.

Stability condition in von-Neumann method is |ε| ≤ 1
|ε| ≤ 1since β ≥ 0 and γ ∈ (0.1).Therefore I-LFDM generalized Huxley equation is unconditionally stable.
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3. NUMERICAL RESULTS AND DISCUSSION

Implicit logarithmic finite difference method is used to acquire the numerical solutions of the generalized
Huxley equation. To demonstrate the correctness of results L2 and L∞error norms:

L2 = ∥U − uN∥2 =

√√√
h

N∑
j=0

∣∣∣U j − (uN) j

∣∣∣2,
L∞ = ∥U − uN∥∞ = max

j

∣∣∣U j − (uN) j

∣∣∣
are used, in which U and u indicate the exact and computed numerical solutions, respectively. In all
numerical computations we took as h = 0.01 and k = 0.0001.

3.1. NUMERICAL EXAMPLE OF GENERALIZED HUXLEY EQUATION
Consider the generalized Huxley equation of the form Equation (1) in domain 0 ≤ x ≤ 1, t > 0 with

initial condition

u (x, 0) =
[γ

2
+
γ

2
tanh

(
σγx

)] 1
δ

and boundary conditions

u(0, t) =
[
γ

2
+
γ

2
tanh

{
σγ

{(
1 + δ − γ

)
ρ

2 (1 + δ)

}
t
}] 1

δ

,u(1, t) =
[
γ

2
+
γ

2
tanh

{
σγ

(
1 +

{(
1 + δ − γ

)
ρ

2 (1 + δ)

}
t
)}] 1

δ

.

The exact solution of this problem is [17]:

u(x, t) =
[
γ

2
+
γ

2
tanh

{
σγ

(
x +

{(
1 + δ − γ

)
ρ

2 (1 + δ)

}
t
)}] 1

δ

where ρ =
√

4β (1 + δ) and σ = δρ
/
4 (1 + δ).

The numerical solutions of Generalized Huxley Equation obtained by I-LFDM are compared with the exact
solutions and numerical solutions obtained by some other methods [2,8-10,12] in literature in Table 1-3.
The comparisons for the case δ = 1, β = 1and γ = 0.001 are shown in Table 1 while the comparisons for the
case δ = 2, β = 1and γ = 0.001 are shown in Table 2 and for the case δ = 3, β = 1and γ = 0.001 are shown
in Table 3. As can be seen from the tables, numerical solutions obtained by the presented method are quite
compatible with exact solutions and numerical solutions obtained by some other methods in the literature.
In addition, the numerical solutions obtained by the method presented at time t = 1 are better than the
numerical solutions obtained by some other methods in the literature. L2 and L∞ error norms for the case
δ = 1, γ = 0.01 and different values of β are given in Table 4. L2 and L∞ error norms for the case δ = 1,β = 1
and different values of γ are given in Table 5. Table 6 presents L2 and L∞ error norms for the case β = 1,
γ = 0.001 and different values of δ. As it can be seen from the tables, the L2 and L∞ error norms acquired by
the I-LFDM are quite small in all cases.

4. CONCLUSION

In this study, implicit logarithmic finite difference method is used to obtain the numerical solutions
of the generalized Huxley equation. The comparison of the numerical solutions obtained by presented
method with the exact solutions and the numerical solutions obtained by previous studies in the literature
is given by tables. It is clear from the tables that the numerical solutions obtained by I-LFDM are in good
agreement with the exact solutions and better than numerical solutions obtained by some other methods in
literature. The presented method is an efficient technique for finding numerical solutions for various kinds
of nonlinear problems.
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Table 1: Exact and numerical solutions for the case δ = 1, β = 1and γ = 0.001.
x t Exact I-LFDM VIM [2],

HPM [8],
ADM [9]

HAM [10] I-EFDM [12]

0.1 0.05 5.000302E-4 5.000199E-4 5.000052E-4 5.000100E-4 5.000125 E-4
0.1 5.000427E-4 5.000276E-4 4.999927E-4 5.000030E-4 5.000102 E-4
1 5.002676E-4 5.002451E-4 4.997678E-4 4.998680E-4 5.000064 E-4

0.5 0.05 5.001009E-4 5.000778E-4 5.000759E-4 5.000810E-4 5.000768 E-4
0.1 5.001134E-4 5.000750E-4 5.000634E-4 5.000730E-4 5.000692 E-4
1 5.003383E-4 5.002758E-4 4.998385E-4 4.999380E-4 5.000572 E-4

0.9 0.05 5.001716E-4 5.001613E-4 5.001466E-4 5.001520E-4 5.001540 E-4
0.1 5.001841E-4 5.001691E-4 5.001341E-4 5.001440E-4 5.001516 E-4
1 5.004090E-4 5.003865E-4 4.999092E-4 5.000090E-4 5.001479 E-4

Table 2: Exact and numerical solutions for the case δ = 2, β = 1and γ = 0.001.
x t Exact I-LFDM VIM [2] HPM [8],

ADM [9]
HAM [10] I-EFDM [12]

0.1 0.05 2.236188E-2 2.236142E-2 2.236077E-2 2.236077E-2 2.236100E-2 2.236110E-2
0.1 2.236244E-2 2.236177E-2 2.236021E-2 2.236021E-2 2.236070E-2 2.236099E-2
1 2.237250E-2 2.237149E-2 2.235015E-2 2.235015E-2 2.223546E-2 2.236082E-2

0.5 0.05 2.236447E-2 2.236343E-2 2.236335E-2 2.236335E-2 2.236360E-2 2.236339E-2
0.1 2.236503E-2 2.236331E-2 2.236279E-2 2.236279E-2 2.236320E-2 2.236305E-2
1 2.237508E-2 2.237229E-2 2.235273E-2 2.235273E-2 2.235720E-2 2.236251E-2

0.9 0.05 2.236705E-2 2.236659E-2 2.236593E-2 2.236593E-2 2.236620E-2 2.236114E-2
0.1 2.236761E-2 2.236693E-2 2.236537E-2 2.236537E-2 2.236580E-2 2.236615E-2
1 2.237766E-2 2.237665E-2 2.235532E-2 2.235531E-2 2.235980E-2 2.236599E-2

Table 3: Exact and numerical solutions for the case δ = 3, β = 1and γ = 0.001.
x t Exact I-LFDM VIM [2] HPM [8],

ADM [9]
HAM [10] I-EFDM [12]

0.1 0.05 7.937402E-2 7.937239E-2 7.937005E-2 7.937005E-2 7.937080E-2 7.937122E-2
0.1 7.937601E-2 7.937361E-2 7.936807E-2 7.936807E-2 7.936970E-2 7.937084E-2
1 7.941169E-2 7.940812E-2 7.933236E-2 7.933234E-2 7.934820E-2 7.937025E-2

0.5 0.05 7.938196E-2 7.937829E-2 7.937799E-2 7.937799E-2 7.937880E-2 7.937814E-2
0.1 7.938394E-2 7.937784E-2 7.937601E-2 7.937601E-2 7.937760E-2 7.937692E-2
1 7.941962E-2 7.940971E-2 7.934031E-2 7.934029E-2 7.935620E-2 7.937501E-2

0.9 0.05 7.938989E-2 7.938826E-2 7.938592E-2 7.938592E-2 7.938670E-2 7.938709E-2
0.1 7.939187E-2 7.938948E-2 7.938394E-2 7.938394E-2 7.938550E-2 7.938671E-2
1 7.942755E-2 7.942398E-2 7.934825E-2 7.934823E-2 7.936410E-2 7.938612E-2

Table 4: L2 and L∞ error norms for the case δ = 1 and γ = 0.01.
t L2 L∞

β = 1 β = 10 β = 100 β = 1 β = 10 β = 100
0.01 4.390519E-7 4.390371E-6 4.388844E-5 4.974336E-7 4.974196E-6 4.972792E-5
0.1 2.851070E-6 2.850957E-5 2.847622E-4 3.825356E-6 3.825217E-5 3.821034E-4
1 4.541154E-6 4.531847E-5 3.835394E-4 6.218224E-6 6.205651E-5 5.263925E-4
10 4.529978E-6 3.594694E-5 1.047479E-7 6.202945E-6 4.923570E-5 1.442949E-7
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Table 5: L2 and L∞ error norms for the case δ = 1 and β = 1.
t L2 L∞

γ = 0.01 γ = 0.001 γ = 0.0001 γ = 0.01 γ = 0.001 γ = 0.0001
0.01 4.390519E-7 4.410392E-9 4.412417E-11 4.974336E-7 4.996848E-9 7.049136E-12
0.1 2.851070E-6 2.863973E-8 2.865266E-10 3.825356E-6 3.842667E-8 5.420848E-11
1 4.541154E-6 4.561835E-8 4.563772E-10 6.218224E-6 6.246538E-8 8.811778E-11
10 4.529978E-6 4.561961E-8 4.563810E-10 6.202945E-6 6.246721E-8 8.811849E-11

Table 6: L2 and L∞ error norms for the case β = 1 and γ = 0.001.
t L2 L∞

δ = 1 δ = 2 δ = 4 δ = 1 δ = 2 δ = 4
0.01 4.410392E-9 1.972431E-7 1.318968E-6 4.996848E-9 2.234709E-7 1.494356E-6
0.1 2.863973E-8 1.280826E-6 8.564763E-6 3.842667E-8 1.718520E-6 1.149162E-5
1 4.561835E-8 2.039346E-6 1.362625E-5 6.246538E-8 2.792493E-6 1.865864E-5
10 4.561961E-8 2.030148E-6 1.344094E-5 6.246721E-8 2.779902E-6 1.840493E-5
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