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Abstract. In this study, the modified frames with both the non-zero curvature and the torsion of the
non-unit speed curves in Euclidean 3-space E3 are examined. The relationships between the derivative
vectors of the modified frames and the Frenet vectors or the vectors of the modified frames of the curve are
given. Besides, the Darboux vectors obtained from the modified orthogonal frames with both the curvature
and torsion of the curve and the unit vectors in the direction of these Darboux vectors are investigated.
Finally, all these results are shown on the example curves.

1. INTRODUCTION

The Frenet frame, which is a moving frame at a given point on any regular curve in Euclidean 3-space
E3, is one of the most important tools used to analyze the curve. The Frenet frame is an orthonormal
frame consisting of the tangent vector, the principal normal vector and binormal vector of the curve. The
curvature and the torsion functions can be defined on the curve using this frame. Studies on the Frenet
frame of a regular curve in E3 are available in various sources, such as [5, 9–11, 16, 19, 20]. According to the
fundamental theorem of regular curves, a regular curve is a curve with functions κ > 0 (curvature) and τ
(torsion) that can be differentiated at every point of the curve, [6]. However, it is possible for the curvature
function to be zero at certain points on the analytical curves. The principal normal and binormal vectors of
these curves are generally discontinuous at the zero point of the curvature, that is, the curvature function
is not always differentiable. In this case, the Frenet derivative equations of an analytical curve causes
ambiguity at a point where the curvature vanishes. Hord and Sasai pondered this problem and discussed
another frame that works fine on these points, [12, 17]. In a simple but useful approach, an orthogonal
frame was introduced for unit speed analytical curves by Sasai, [18]. Although the vectors of this modified
orthogonal frame are obtained by multiplying each Frenet vector by the curvature function κ, they allow
the use of a new formula corresponding to the Frenet derivative equations for the above-mentioned case.
It is also a useful tool for investigating analytical curves with singular points. Then, Bükcü and Karacan
have developed the Sasai’s study and they have obtained the newly modified frame through the coefficient
of torsion τ by the Frenet vectors and them spherical curves, [3, 4]. There are many studies on the modified
orthogonal frame of a curve in Euclidean or Lorentzian 3-space, [1, 2, 7, 8, 14, 15, 21]. Also, the Darboux
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vector of a space curve is the areal velocity vector of the moving frame of the curve. The direction of the
Darboux vector is the direction of the instantaneous rotation axis. The Darboux vector can be expressed in
terms of the apparatus of the moving frame. The Darboux vector can also be studied in a modified way for
space curves with singular points, [13, 22].

In this study, the modified frames with both the non-zero curvature and the torsion of the non-unit
speed curves in Euclidean 3-spaceE3 are examined. The derivatives of the vectors belong to these modified
frames are calculated. The relationships between these derivative vectors and the Frenet vectors of the
curve or the vectors of the modified frame are given. Besides, the Darboux vectors obtained from the
modified orthogonal frames with both the curvature and torsion of the curve and the unit vectors in the
direction of these Darboux vectors are investigated. Finally, these all results are investigated on the example
curves. The aim of this study is to generalize the modified frame formulas, created for unit speed curves
by Sasai, for non-unit speed curves. And thus, it provides ease of operation for the solution of the problem
at singular points on a non-unit speed analytic curve, that is, there is no need to transform the curve into a
unit speed curve every time.

2. PRELIMINARIES

Let the curve α (t) be a differentiable space curve in E3. The Frenet vectors, the curvature and the torsion
of the curve α (t) are given as follows:

T (t) =
α′ (t)
v(t)
, B (t) =

α′ (t) ∧ α′′ (t)
∥α′ (t) ∧ α′′ (t)∥

, N (t) = B (t) ∧ T (t) , (1)

κ (t) =
∥α′ (t) ∧ α′′ (t)∥

v3(t)
and τ (t) =

det (α′ (t) , α′′ (t) , α′′′ (t))

∥α′ (t) ∧ α′′ (t)∥2
, (2)

where v (t) = ∥α′ (t)∥, respectively. The Frenet derivative formulas of this curve are as follows:
T′ (t)

N′ (t)

B′ (t)

 =


0 v (t)κ (t) 0

−v (t)κ (t) 0 v (t) τ (t)

0 −v (t) τ (t) 0




T (t)

N (t)

B (t)

 , (3)

[11], [16]. The Darboux vector W (t) of the non-unit speed curve α (t) is as follows:

W (t) = N (t) ∧N′ (t) = v (t) (τ (t) T (t) + κ (t) B (t)) , (4)

where,
T′ (t) =W (t) ∧ T (t) , N′ (t) =W (t) ∧N (t) , B′ (t) =W (t) ∧ B (t) . (5)

The unit vector C (t) in direction of the Darboux vector of the non-unit speed curve α (t) is

C (t) =
W(t)
∥W(t)∥

=
v (t)√

κ2 (t) + τ2 (t)
(τ (t) T (t) + κ (t) B (t)) , (6)

or if the angle between of the binormal vector B (t) and the Darboux vector W (t) of the curve α (t) is φ (t),
then the unit vector is

C (t) = sinφT (t) + cosφB (t) , (7)

[16]. If v (t) = 1, then the curve α (t) is called unit speed curve. Let’s define a orthogonal frame
{E1 (t) ,E2 (t) ,E3 (t)} for the unit speed curve α (t) as follows:

E1 (t) = α′ (t) , E2 (t) = E′1 (t) , E3 (t) = E1 (t) ∧ E2 (t) . (8)
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If the curvature κ (t) of the curve α (t) is non-zero, then there are the following relationships between the
vectors E1 (t) ,E2 (t) ,E3 (t) and the Frenet vectors of the curve:

E1 (t) = T (t) , E2 (t) = κ (t) N (t) , E3 (t) = κ (t) B (t) , (9)

where,
⟨E1 (t) ,E2 (t)⟩ = ⟨E2 (t) ,E3 (t)⟩ = ⟨E1 (t) ,E3 (t)⟩ = 0, (10)

and
⟨E1 (t) ,E1 (t)⟩ = 1, ⟨E2 (t) ,E2 (t)⟩ = ⟨E3 (t) ,E3 (t)⟩ = κ2 (t) . (11)

The orthogonal frame {E1 (t) ,E2 (t) ,E3 (t)} is called the modified frame with the curvature κ (t) of the unit
speed curve α (t). It is noted that the modified orthogonal frame coincides with Frenet frame for κ = 1.
There are the following relationships between the vectors E1 (t) ,E2 (t) ,E3 (t) and them derivative vectors:

E′1 (t)

E′2 (t)

E′3 (t)

 =


0 1 0

−κ2 (t)
κ′ (t)
κ (t)

τ (t)

0 −τ (t)
κ′ (t)
κ (t)




E1 (t)

E2 (t)

E3 (t)

 , (12)

here, τ (t) = det(α′(t),α′′(t),α′′′(t))
κ2(t) is the torsion of the curve (α), we know that any zero point of κ2(t) is a removable

singularity of τ(t), [17]. Or, let the torsion τ (t) of the curve α (t) be non-zero. Then let’s define the following
orthogonal frame {A1 (t) ,A2 (t) ,A3 (t)} for the unit speed curve α (t) as follows:

A1 (t) = T (t) , A2 (t) = τ (t) N (t) , A3 (t) = τ (t) B (t) , (13)

where,
⟨A1 (t) ,A2 (t)⟩ = ⟨A2 (t) ,A3 (t)⟩ = ⟨A1 (t) ,A3 (t)⟩ = 0, (14)

and
⟨A1 (t) ,A1 (t)⟩ = 1, ⟨A2 (t) ,A2 (t)⟩ = ⟨A3 (t) ,A3 (t)⟩ = τ2 (t) . (15)

The orthogonal frame {A1 (t) ,A2 (t) ,A3 (t)} is called the modified frame with the torsion τ (t) of the unit
speed curve α (t). And, there are the following relationships between the vectors A1 (t) ,A2 (t) ,A3 (t) and
them derivative vectors:


A′1 (t)

A′2 (t)

A′3 (t)

 =


0
κ (t)
τ (t)

0

−κ (t) τ (t)
τ′ (t)
τ (t)

τ (t)

0 −τ (t)
τ′ (t)
τ (t)




A1 (t)

A2 (t)

A3 (t)

 . (16)

The Darboux vector D (t) obtained from the modified orthogonal frame with the curvature κ (t) of a unit
speed curve α (t) is obtained as follows:

D (t) = τ (t) E1 (t) + E3 (t) (17)

and
E2 (t) ∧ E′2 (t) = κ2 (t) D (t) . (18)

If the angle between of the Darboux vector D(t) and the vector E3 (t) is φ (t), the unit vector in direction of
the Darboux vector is

G (t) = sinφE1 (t) +
cosφ
κ(t)

E3 (t) . (19)



S. Gür Mazlum, M. Bektaş, / TJOS 7 (2), 58–74 61

3. The Modified Orthogonal Frames of the Non-Unit Speed Curve in E3

Let the Frenet frame, the curvature and the torsion of a non-unit speed curve α (t) be {T (t) ,N (t) ,B (t)} , κ (t)
and τ (t), respectively.

3.1. The Modified Orthogonal Frame With the Curvature κ (t) of a Non-Unit Speed Curve in E3

Theorem 3.1. Let the Frenet frame and the curvature be {T (t) ,N (t) ,B (t)} and κ (t) of the non-unit speed space
curve α (t), respectively. The modified orthogonal frame {E1 (t) ,E2 (t) ,E3 (t)} with the curvature κ (t) of the curve
α (t) is as follows: 

E1 (t) = v (t) T (t) ,

E2 (t) = v2 (t)κ (t) N (t) ,

E3 (t) = v3 (t)κ (t) B (t) .

(20)

Proof. Let’s create the vectors E1 (t) ,E2 (t) ,E3 (t) using the Gram-Schmidt orthogonalization procedure as
follows: 

E1 (t) = α′ (t) ,

E2 (t) = E′1 (t) −

〈
E′1 (t) ,E1 (t)

〉
⟨E1 (t) ,E1 (t)⟩

E1 (t) ,

E3 (t) = E1 (t) ∧ E2 (t) .

(21)

Here, since the curve α (t) is not an unit speed curve, we can’t use the expression (8). From the expression
(1), the vector E1 (t) is obtained as follows:

E1 (t) = v (t) T (t) . (22)

From the expressions (3) and (22), the following equation is gotten:〈
E′1 (t) ,E1 (t)

〉
⟨E1 (t) ,E1 (t)⟩

=
v′ (t)
v (t)
. (23)

From the expressions (3), (21) and (23), the vectors E2 (t) and E3 (t) are obtained as follows:

E2 (t) = v2 (t)κ (t) N (t) , (24)

E3 (t) = v3 (t)κ (t) B (t) . (25)

The proof is completed from the expressions (22), (24) and (25).

Corollary 3.2. As a result of Theorem 3.1, the following equations are obtained for the vectors E1 (t) ,E2 (t) ,E3 (t):

⟨E1 (t) ,E2 (t)⟩ = ⟨E2 (t) ,E3 (t)⟩ = ⟨E1 (t) ,E3 (t)⟩ = 0, (26)
⟨E1 (t) ,E1 (t)⟩ = v2 (t) ,

⟨E2 (t) ,E2 (t)⟩ = v4 (t)κ2 (t) ,

⟨E3 (t) ,E3 (t)⟩ = v6 (t)κ2 (t) ,

(27)

and 
E1 (t) ∧ E2 (t) = E3 (t) ,

E2 (t) ∧ E3 (t) = v4(t)κ2(t)E1 (t) ,

E3 (t) ∧ E1 (t) = v2(t)E2 (t) .

(28)
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Remark 3.3. The modified frame {E1 (t) ,E2 (t) ,E3 (t)} with the curvature κ (t) of the non-unit speed curve α (t) is
indeed orthogonal (from the expression (26)), but is not orthonormal (from the expression (ref20)), because the vectors
E1 (t) ,E2 (t) ,E3 (t) are not unit vectors (if not v (t) = κ (t) = 1 at the same time). If v (t) = κ (t) = 1 at the same time,
then the modified frame {E1 (t) ,E2 (t) ,E3 (t)} becomes an orthonormal frame.

Theorem 3.4. Let the Frenet frame, the curvature and the torsion be {T (t) ,N (t) ,B (t)}, κ (t) and κ (t) of the non-unit
speed space curve α (t), respectively. And let the modified orthogonal frame with the curvature κ (t) of the curve α (t)
be {E1 (t) ,E2 (t) ,E3 (t)}. There are the following equations between the Frenet vectors and the derivative vectors
E′1 (t) ,E′2 (t) ,E′3 (t):


E′1 (t)

E′2 (t)

E′3 (t)

 =


v′ (t) v2 (t)κ (t) 0

−v3 (t)κ2 (t) 2v (t) v′ (t)κ (t) + v2 (t)κ′ (t) v3 (t)κ (t) τ (t)

0 −v4 (t)κ (t) τ (t) 3v2 (t) v′ (t)κ (t) + v3 (t)κ′ (t)




T (t)

N (t)

B (t)

 . (29)

Proof. By using the expression (3), from the expression (20), we obtain the derivative vectors E′1 (t), E′2 (t),
E′3 (t) in terms of the Frenet vectors T (t) ,N (t) ,B (t) as follows:

E′1 (t) = (v (t) T (t))′ ,

E′1 (t) = v′ (t) T (t) + v2 (t)κ (t) N (t) , (30)

E′2 (t) =
(
v2 (t)κ (t) N (t)

)′
,

E′2 (t) = −v3 (t)κ2 (t) T (t) +
(
2v (t) v′ (t)κ (t) + v2 (t)κ′ (t)

)
N (t) + v3 (t)κ (t) τ (t) B (t) , (31)

E′3 (t) =
(
v3 (t)κ (t) B (t)

)′
E′3 (t) = −v4 (t)κ (t) τ (t) N (t) +

(
3v2 (t) v′ (t)κ (t) + v3 (t)κ′ (t)

)
B (t) . (32)

The proof is completed from the expressions (30), (31) and (32).

Theorem 3.5. Let the Frenet frame, the curvature and the torsion be {T (t) ,N (t) ,B (t)}, κ (t) and τ (t) of the non-unit
speed space curve α (t), respectively. And let the modified orthogonal frame with the curvature κ (t) of the curve α (t) be
{E1 (t) ,E2 (t) ,E3 (t)}. There are the following equations between their derivatives and the vectors E1 (t) ,E2 (t) ,E3 (t):


E′1 (t)

E′2 (t)

E′3 (t)

 =


v′ (t)
v (t)

1 0

−v2 (t)κ2 (t)
2v′ (t)
v (t)

+
κ′ (t)
κ (t)

τ (t)

0 −v2 (t) τ (t)
3v′ (t)
v (t)

+
κ′ (t)
κ (t)




E1 (t)

E2 (t)

E3 (t)

 . (33)

Proof. From the expression (20), the Frenet vectors T (t) ,N (t) ,B (t) are written in terms of the vectors
E1 (t) ,E2 (t) ,E3 (t) as follows:

T (t) =
E1 (t)

v (t)
, N (t) =

E2 (t)

v2 (t)κ (t)
, B (t) =

E3 (t)

v3 (t)κ (t)
. (34)
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If the expression (34) is substituted in the expressions (30), (31) and (32), respectively, we get

E′1 (t) =
v′ (t)
v (t)

E1 (t) + E2 (t) , (35)

E′2 (t) = −v2 (t)κ2 (t) E1 (t) +
(

2v′ (t)
v (t)

+
κ′ (t)
κ (t)

)
E2 (t) + τ (t) E3 (t) , (36)

E′3 (t) = −v2 (t) τ (t) E2 (t) +
(

3v′ (t)
v (t)

+
κ′ (t)
κ (t)

)
E3 (t) . (37)

The proof is completed from the expressions (35), (36) and (37).

Special Case: If the curve α (t) is an unit speed curve, v (t) = 1. In this case, from the expressions (20) and
(27), the expressions (9) and (11) are obtained, respectively. And the expression (28) would be as follows:

E1 (t) ∧ E2 (t) = E3 (t) , E2 (t) ∧ E3 (t) = κ2(t)E1 (t) , E3 (t) ∧ E1 (t) = E2 (t) . (38)

Also, from the expression (33), the following equations are obtained:
E′1 (t)

E′2 (t)

E′3 (t)

 =


0 κ (t) 0

−κ2 (t) κ′ (t) κ (t) τ (t)

0 −κ (t) τ (t) κ′ (t)




T (t)

N (t)

B (t)

 . (39)

Finally, we obtain the equalities between of the modified orthogonal frame and the derivative vectors of
the modified orthogonal frame with the curvature κ (t) of the unit speed curve α (t), like the expression (12).

3.2. The Modified Orthogonal Frame With the Torsion τ (t) of a Non-Unit Speed Curve in E3

Theorem 3.6. Let the Frenet frame and the curvature be {T (t) ,N (t) ,B (t)} and κ (t) of the non-unit speed space
curve α (t), respectively. The modified orthogonal frame {A1 (t) ,A2 (t) ,A3 (t)} with the torsion τ (t) of the curve α (t)
is as follows: 

A1 (t) = v (t) T (t) ,

A2 (t) = v2 (t) τ (t) N (t) ,

A3 (t) = v3 (t) τ (t) B (t) .

(40)

Proof. Let’s create the vectors A1 (t) ,A2 (t) ,A3 (t) using the Gram-Schmidt orthogonalization procedure as
follows: 

A1 (t) = α′ (t) ,

A2 (t) =
τ (t)
κ (t)

A′1 (t) −

〈
A′1 (t) , A1 (t)

〉
⟨A1 (t) , A1 (t)⟩

A1 (t)

 ,
A3 (t) = A1 (t) ∧ A2 (t) .

(41)

Here, since the curve α (t) is not an unit speed curve, we can’t use the expression (13). From the expression
(1), the vector A1 (t) is obtained as follows:

A1 (t) = v (t) T (t) . (42)
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From the expression (22), we see that the vectors E1 (t) and A1 (t) are equal. So from the expression (23), we
get 〈

A′1 (t) ,A1 (t)
〉

⟨A1 (t) ,A1 (t)⟩
=

v′ (t)
v (t)
. (43)

From the expressions (3), (42) and (43), the vectors A2 (t) and A3 (t) are obtained as follows:

A2 (t) = v2 (t) τ (t) N (t) , (44)

A3 (t) = v3 (t) τ (t) B (t) . (45)

The proof is completed from the expressions (42), (44) and (45).

Corollary 3.7. As a result of Theorem 3.6, the following equations are obtained for the vectors A1 (t) ,A2 (t) ,A3 (t):

⟨A1 (t) , A2 (t)⟩ = ⟨A2 (t) , A3 (t)⟩ = ⟨A1 (t) , A3 (t)⟩ = 0, (46)


⟨A1 (t) , A1 (t)⟩ = v2 (t) ,

⟨A2 (t) , A2 (t)⟩ = v4 (t) τ2 (t) ,

⟨A3 (t) , A3 (t)⟩ = v6 (t) τ2 (t) ,

(47)

and 
A1 (t) ∧ A2 (t) = A3 (t) ,

A2 (t) ∧ A3 (t) = v4(t)τ2(t)A1 (t) ,

A3 (t) ∧ A1 (t) = v2(t)A2 (t) .

(48)

Remark 3.8. The modified frame {A1 (t) ,A2 (t) ,A3 (t)} with the torsion τ (t) of the non-unit speed curve α (t) is
indeed orthogonal (from the expression (46)), but is not orthonormal (from the expression (47)), because the vectors
A1 (t) ,A2 (t) ,A3 (t) are not unit vectors (if not v (t) = τ2 (t) = 1 at the same time). If v (t) = τ2 (t) = 1 at the same
time, then the modified frame {A1 (t) ,A2 (t) ,A3 (t)} becomes an orthonormal frame.

Theorem 3.9. Let the Frenet frame, the curvature and the torsion be {T (t) ,N (t) ,B (t)}, κ (t) and τ (t) of the non-unit
speed space curve α (t), respectively. And let the modified orthogonal frame with the torsion τ (t) of the curve α (t)
be {A1 (t) ,A2 (t) ,A3 (t)}. There are the following equations between the Frenet vectors and the derivative vectors
A′1 (t) ,A′2 (t) ,A′3 (t):


A′1 (t)

A′2 (t)

A′3 (t)

 =


v′ (t) v2 (t)κ (t) 0

−v3 (t)κ (t) τ (t) 2v (t) v′ (t) τ (t) + v2 (t) τ′ (t) v3 (t) τ2 (t)

0 −v4 (t) τ2 (t) 3v2 (t) v′ (t) τ (t) + v3 (t) τ′ (t)




T (t)

N (t)

B (t)

 .
(49)

Proof. By using the expression (3), from the expression (40), we obtain the derivative vectors A′1 (t), A′2 (t),
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A′3 (t) in terms of the Frenet vectors T (t), N (t), B (t) as follows:

A′1 (t) = (v (t) T (t))′ ,

A′1 (t) = v′ (t) T (t) + v2 (t)κ (t) N (t) , (50)

A′2 (t) =
(
v2 (t) τ (t) N (t)

)′
A′2 (t) =

(
−v3 (t)κ (t) τ (t)

)
T (t) +

(
2v (t) v′ (t) τ (t) + v2 (t) τ′ (t)

)
N (t) + v3 (t) τ2 (t) B (t) , (51)

A′3 (t) =
(
v3 (t) τ (t) B (t)

)′
A′3 (t) = −v4 (t) τ2 (t) N (t) +

(
3v2 (t) v′ (t) τ (t) + v3 (t) τ′ (t)

)
B (t) . (52)

The proof is completed from the expressions (50), (51) and (52).

Theorem 3.10. Let the Frenet frame, the curvature and the torsion be {T (t) ,N (t) ,B (t)}, κ (t) and τ (t) of the
non-unit speed space curve α (t), respectively. And let the modified orthogonal frame with the torsion τ (t) of the
curve α (t) be {A1 (t) ,A2 (t) ,A3 (t)}. There are the following equations between their derivatives and the vectors
A1 (t) ,A2 (t) ,A3 (t):


A′1 (t)

A′2 (t)

A′3 (t)

 =


v′ (t)
v (t)

κ (t)
τ (t)

0

−v2 (t)κ (t) τ (t)
2v′ (t)
v (t)

+
τ′ (t)
τ (t)

τ (t)

0 −v2 (t) τ (t)
3v′ (t)
v (t)

+
τ′ (t)
τ (t)




A1 (t)

A2 (t)

A3 (t)

 . (53)

Proof. From the expression (40), the Frenet vectors T (t) ,N (t) ,B (t) are written in terms of the vectors
A1 (t) ,A2 (t) ,A3 (t) as follows:

T (t) =
A1 (t)

v (t)
, N (t) =

A2 (t)

v2 (t) τ (t)
, B (t) =

A3 (t)

v3 (t) τ (t)
. (54)

If the expression (54) is substituted in the expressions (50), (51) and (52), respectively, we get

A′1 (t) =
v′ (t)
v (t)

A1 (t) +
κ (t)
τ (t)

A2 (t) , (55)

A′2 (t) = −v2 (t)κ (t) τ (t) A1 (t) +
(

2v′ (t)
v (t)

+
τ′ (t)
τ (t)

)
A2 (t) + τ (t) A3 (t) , (56)

A′3 (t) = −v2 (t) τ (t) A2 (t) +
(

3v′ (t)
v (t)

+
τ′ (t)
τ (t)

)
A3 (t) . (57)

The proof is completed from the expressions (55), (56) and (57).

Special Case: If the curve α (t) is an unit speed curve, v (t) = 1. In this case, the expressions (40) and (47),
the expressions (13) and (15) are obtained, respectively. And the expression (48) would be as follows:

A1 (t) ∧ A2 (t) = A3 (t) , A2 (t) ∧ A3 (t) = τ2(t)A1 (t) , A3 (t) ∧ A1 (t) = A2 (t) . (58)
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Also, from the expression (49), the following equations are obtained:
A′1 (t)

A′2 (t)

A′3 (t)

 =


0 κ (t) 0

−κ (t) τ (t) τ′ (t) τ2 (t)

0 −τ2 (t) τ′ (t)




T (t)

N (t)

B (t)

 .
Finally, we obtain the equalities between of the modified orthogonal frame and the derivative vectors of
the modified orthogonal frame with the torsion τ (t) of the unit speed curve α (t), like the expression (16).

4. The Darboux vectors obtained from the modified orthogonal frames the non-unit speed curves in
Euclidean 3-space E3

In this section, we will calculate the equivalent of the Darboux vector W(t) (or the unit vector in the direction
of the Darboux vector C(t)) obtained from the Frenet frame in terms of the vectors of the modified frame of
a non-unit speed curve α (t). But to avoid confusion, we will denote the Darboux vector (the unit vector in
the direction of the Darboux vector) obtained from the modified frame with D(t) (or G(t)).

4.1. The Darboux vector obtained from the modified orthogonal frame with the curvature κ (t) of a non-unit
speed curve in Euclidean 3-space E3

Theorem 4.1. Let the modified orthogonal frame with the curvature κ (t) of the non-unit speed space curve α (t) be
{E1 (t) ,E2 (t) ,E3 (t)}. The Darboux vector D (t) obtained from this frame is as follows:

D (t) = τ (t) E1 (t) +
E3 (t)
v2 (t)

, (59)

here, (
E1 (t)
v (t)

)′
= D (t) ∧

E1 (t)
v (t)

=
E2 (t)
v (t)

, (60)

(
E2 (t)

v2 (t)κ (t)

)′
= D (t) ∧

E2 (t)
v2 (t)κ (t)

= −κ (t) E1 (t) +
τ (t)

v2 (t)κ (t)
E3 (t) , (61)

(
E3 (t)

v3 (t)κ (t)

)′
= D (t) ∧

E3 (t)
v3 (t)κ (t)

= −
τ (t)

v (t)κ (t)
E2 (t) . (62)

Proof. From the expression (4) and (34), the Darboux vector D (t) is obtained as the expression (59). Also,
from the expression (33), we can write the following equations:

(
E1 (t)
v (t)

)′
=

1
v (t)

E′1 (t) −
v′ (t)
v2 (t)

E1 (t) , (63)

(
E1 (t)
v (t)

)′
=

E2 (t)
v (t)

. (64)

On the other hand, from the expression (28), we get

D (t) ∧
E1 (t)
v (t)

=

(
τ (t) E1 (t) +

E3 (t)
v2 (t)

)
∧

E1 (t)
v (t)

,

D (t) ∧
E1 (t)
v (t)

=
E2 (t)
v (t)

. (65)

From the equality of the expressions (64) and (65), the expression (60) is gotten. If similar operations are
applied for E2(t) and E3(t) vectors, the equations (61) and (62) are obtained.
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Corollary 4.2. As a result of Theorem 4.1, the following equations are obtained:

E′1 (t) = D (t) ∧ E1 (t) +
v′ (t)
v (t)

E1 (t) ,

E′2 (t) = D (t) ∧ E2 (t) +
(

2v′ (t)
v (t)

+
κ′ (t)
κ (t)

)
E2 (t) ,

E′3 (t) = D (t) ∧ E3 (t) +
(

3v′ (t)
v (t)

+
κ′ (t)
κ (t)

)
E3 (t) .

(66)

Corollary 4.3. As a result of Corollary 4.2, the following equations are obtained:
E1 (t) ∧ E′1 (t) = E3 (t) ,

E2 (t) ∧ E′2 (t) = v4 (t)κ2 (t) D (t) ,

E3 (t) ∧ E′3 (t) = v6 (t)κ2 (t) τ (t) E1 (t) .

(67)

Corollary 4.4. From Corollary 4.3, the following equation are gotten:

D (t) =
E2 (t) ∧ E′2 (t)

v4 (t)κ2 (t)
. (68)

Remark 4.5. Here, we have actually expressed the Darboux vector W (t) of the Frenet frame of the non-unit speed
curve α (t) in terms of the modified frame {E1 (t) ,E2 (t) ,E3 (t)} with the curvature κ (t) of the curve, with the vector
D (t) in the expression (68).

Special Case: If the curve α (t) is an unit speed curve, v (t) = 1. In this case, the expression (59) is obtained
as in expression (17). And the expressions (66) and (67) would be as following:

E′1 (t) = D(t) ∧ E1 (t) ,

E′2 (t) = D(t) ∧ E2 (t) +
κ′ (t)
κ (t)

E2 (t) ,

E′3 (t) = D(t) ∧ E3 (t) +
κ′ (t)
κ (t)

E3 (t)

and
E1 (t) ∧ E′1 (t) = E3 (t) , E2 (t) ∧ E′2 (t) = κ2 (t) D (t) , E3 (t) ∧ E′3 (t) = κ2 (t) τ (t) E1 (t) .

Finally, the expression (68) is obtained as in the expression (18).

Theorem 4.6. Let the modified orthogonal frame with the curvature κ (t) of the non-unit speed space curve α (t) be
{E1 (t) ,E2 (t) ,E3 (t)}. And let the angle between the Darboux vector D(t) and the vector E3 (t) be φ (t). The unit
vector in the direction of the Darboux vector G (t) is as follows:

G (t) =
sinφ
v(t)

E1 (t) +
cosφ

v3(t)κ(t)
E3 (t) . (69)

Proof. From the expressions (27) and (59), we get

∥D(t)∥ =

√
⟨E1 (t) ,E1 (t)⟩ τ2 (t) +

⟨E3 (t) ,E3 (t)⟩
v4 (t)

,

∥D(t)∥ = v(t)
√
κ2 (t) + τ2 (t). (70)
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From the expressions (59) and (70), the unit vector in the direction of the Darboux vector G (t) is gotten as
follows:

G (t) =
τ (t)

v(t)
√
κ2 (t) + τ2 (t)

E1 (t) +
1

v3(t)
√
κ2 (t) + τ2 (t)

E3 (t) . (71)

Figure 1: The Darboux vector obtained from the modified orthogonal frame with the curvature κ (t)

If the angle between of the Darboux vector D(t) and the vector E3 (t) is φ (t) , from the Figure 1 and the
expressions (27) and (70), we write

cosφ =
κ(t)√

κ2 (t) + τ2 (t)
and sinφ =

τ (t)√
κ2 (t) + τ2 (t)

. (72)

From the expressions (71) and (72), the expression (69) is obtained.

Special Case: If the curve α (t) is an unit speed curve, v (t) = 1. In this case, the expression (69) is obtained
as in expression (19).

4.2. The Darboux vector obtained from the modified orthogonal frame with the torsion τ (t) of a non-unit
speed curve in Euclidean 3-space E3

Theorem 4.7. Let the modified orthogonal frame with the torsion τ (t) of the non-unit speed space curve α (t) be
{A1 (t) ,A2 (t) ,A3 (t)}. The Darboux vector D (t) obtained from this frame is as follows:

D (t) = τ (t) A1 (t) +
κ (t)

v2 (t) τ (t)
A3 (t) , (73)

here, (
A1 (t)
v (t)

)′
= D (t) ∧

A1 (t)
v (t)

=
κ(t)

v (t) τ(t)
A2 (t) , (74)

(
A2 (t)

v2 (t) τ (t)

)′
= D (t) ∧

A2 (t)
v2 (t) τ (t)

= −κ (t) A1 (t) +
A3 (t)
v2 (t)

, (75)

(
A3 (t)

v3 (t) τ (t)

)′
= D (t) ∧

A3 (t)
v3 (t) τ (t)

= −
A2 (t)
v (t)

. (76)

Proof. From the expressions (4) and (54), the Darboux vector D (t) is obtained as the expression (73). Also,
from the expression (53), we can write the following equations:(

A1 (t)
v (t)

)′
=

1
v (t)

A′1 (t) −
v′ (t)
v2 (t)

A1 (t) , (77)

(
A1 (t)
v (t)

)′
=

κ (t)

v (t) τ(t)
A2 (t) . (78)
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On the other hand, from the expression (48), we get

D (t) ∧
A1 (t)
v (t)

=

(
τ (t) A1 (t) +

κ (t)
v2 (t) τ (t)

A3 (t)
)
∧

A1 (t)
v (t)

,

D (t) ∧
A1 (t)
v (t)

=
κ(t)

v (t) τ(t)
A2 (t) . (79)

From the equality of the expressions (78) and (79), the expression (74) is gotten. If similar operations are
applied for A2(t) and A3(t) vectors, the equations (75) and (76) are obtained.

Corollary 4.8. As a result of Theorem 4.7, the following equations are obtained:

A′1 (t) = D (t) ∧ A1 (t) +
v′ (t)
v (t)

A1 (t) ,

A′2 (t) = D (t) ∧ A2 (t) +
(

2v′ (t)
v (t)

+
τ′ (t)
τ (t)

)
A2 (t) ,

A′3 (t) = D (t) ∧ A3 (t) +
(

3v′ (t)
v (t)

+
τ′ (t)
τ (t)

)
A3 (t) .

(80)

Corollary 4.9. As a result of Corollary 4.8, the following equations are obtained:

A1 (t) ∧ A′1 (t) =
κ(t)
τ (t)

A3 (t) ,

A2 (t) ∧ A′2 (t) = v4 (t) τ2 (t) D (t) ,

A3 (t) ∧ A′3 (t) = v6 (t) τ3 (t) A1 (t) .

(81)

Corollary 4.10. From Corollary 4.9, the following equation is gotten:

D (t) =
A2 (t) ∧ A′2 (t)

v4 (t) τ2 (t)
. (82)

Remark 4.11. Here, we have actually expressed the Darboux vector W (t) of the Frenet frame of the non-unit speed
curve α (t) in terms of the modified frame {A1 (t) ,A2 (t) ,A3 (t)} with the torsion τ (t) of the curve, with the vector
D (t) in the expression (82).

Special Case: If the curve α (t) is an unit speed curve, v (t) = 1. In this case, the expressions (73), (80), (81)
and (82) would be as following:

D (t) = τ (t) A1 (t) +
κ (t)
τ (t)

A3 (t) ,

A′1 (t) = D (t) ∧ A1 (t) ,

A′2 (t) = D (t) ∧ A2 (t) +
τ′ (t)
τ (t)

A2 (t) ,

A′3 (t) = D (t) ∧ A3 (t) +
τ′ (t)
τ (t)

A3 (t) ,
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A1 (t) ∧ A′1 (t) =
κ(t)
τ (t)

A3 (t) , A2 (t) ∧ A′2 (t) = τ2 (t) D (t) , A3 (t) ∧ A′3 (t) = τ3 (t) A1 (t)

and

D (t) =
A2 (t) ∧ A′2 (t)
τ2 (t)

.

Theorem 4.12. Let the modified orthogonal frame with the torsion τ (t) of the non-unit speed space curve α (t) be
{A1 (t) ,A2 (t) ,A3 (t)}. And let the angle between the Darboux vector D(t) and the vector A3 (t) be φ (t). The unit
vector in the direction of the Darboux vector G (t) is as follows:

G (t) =
sinφ
v(t)

A1 (t) +
cosφ

v3(t)τ(t)
A3 (t) . (83)

Proof. From the expressions (47) and (73), we get

∥∥∥D(t)
∥∥∥ =

√
⟨A1 (t) ,A1 (t)⟩ τ2 (t) +

⟨A3 (t) ,A3 (t)⟩κ2 (t)
v4 (t) τ2 (t)

,

∥∥∥D(t)
∥∥∥ = v(t)

√
κ2 (t) + τ2 (t). (84)

From the expressions (73) and (84), the unit vector in the direction of the Darboux vector G (t) is gotten as
follows:

G (t) =
τ (t)

v(t)
√
κ2 (t) + τ2 (t)

A1 (t) +
κ (t)

v3(t)τ (t)
√
κ2 (t) + τ2 (t)

A3 (t) . (85)

Figure 2: The Darboux vector obtained from the modified orthogonal frame with the torsion τ (t)

If the angle between of the Darboux vector D(t) and the vector A3 (t) is φ (t) , from the Figure 2 and the
expressions (47) and (84), we write

cosφ =
κ(t)√

κ2 (t) + τ2 (t)
and sinφ =

τ (t)√
κ2 (t) + τ2 (t)

. (86)

From the expressions (85) and (86), the expression (83) is obtained.

Special Case: If the curve α (t) is an unit speed curve, v (t) = 1. In this case, the expression (83) is obtained
as follows:

G (t) = sinφA1 (t) +
cosφ
τ(t)

A3 (t) . (87)
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Example 4.13. Let’s consider the non-unit speed Euler spiral (clothoid or Cornu spiral)

α (t) =

a

t∮
0

cos
(
πx2

2

)
dx, a

t∮
0

sin
(
πx2

2

)
dx, at

 ,

.

Figure 3: Euler spiral

Figure 3, [9]. Here the components
t∮

0
cos

(
πx2

2

)
dx and

t∮
0

sin
(
πx2

2

)
dx are called Fresnel integrals. Then the first,

second and third derivative vectors of α (t) are as follows:

α′ (t) =
(
a cos

(
πt2

2

)
, a sin

(
πt2

2

)
, a

)
,

α
′′

(t) =
(
−aπt sin

(
πt2

2

)
, aπt cos

(
πt2

2

)
, 0

)
,

α
′′′

(t) =
(
−aπ2t2 cos

(
πt2

2

)
,−aπ2t2 sin

(
πt2

2

)
, 0

)
.

Here, ∥α′ (t)∥ = v (t) =
√

2 |a| , if a , ± 1
√

2
, the curve be α (t) is not an unit speed curve. So the Frenet vectors, the

curvature and the torsion are obtained as follows:

T (t) =

(
a
√

2 |a|
cos

(
πt2

2

)
,

a
√

2 |a|
sin

(
πt2

2

)
,

a
√

2 |a|

)
,

N (t) =

(
−

at
|a| |t|

sin
(
πt2

2

)
,

at
|a| |t|

cos
(
πt2

2

)
, 0

)
,

B (t) =

(
−

t
√

2 |t|
cos

(
πt2

2

)
,−

t
√

2 |t|
sin

(
πt2

2

)
,

t
√

2 |t|

)
,

κ (t) =
π |t|
2 |a|

, τ(t) =
πt
2a
.
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Now, let’s examine the left and right limits of the vectors N(t) and B(t):

lim
t→0+

N (t) =
(
0,

a
|a|
, 0

)
and lim

t→0−
N (t) =

(
0,−

a
|a|
, 0

)
,

lim
t→0+

B (t) =
(
−

1
√

2
, 0,

1
√

2

)
and lim

t→0−
B (t) =

(
1
√

2
, 0,−

1
√

2

)
.

Since lim
t→0+

N (t) , lim
t→0−

N (t) and lim
t→0+

B (t) , lim
t→0−

B (t) , there is no limit at t = 0. So the normal vector and binormal

vector are discontinuous at t = 0. And it is clear that, the curvature function is not differentiable at t = 0. Then,
to prevent the occurrence of two reverse oriented principal normal vector and binormal vector, it is helpful to use the
following modified orthogonal frame with the curvature κ (t), obtained from Frenet vectors:

E1 (t) =

(
a cos

(
πt2

2

)
, a sin

(
πt2

2

)
, a

)
,

E2 (t) =

(
−aπt sin

(
πt2

2

)
, aπt cos

(
πt2

2

)
, 0

)
,

E3 (t) =

(
−a2πt cos

(
πt2

2

)
, − a2πt sin

(
πt2

2

)
, a2πt

)
,

κ2 (t) =
π2t2

4a2 , τ(t) =
πt
2a
.

Thus, the problem of not being able to differentiate of the curvature at the point t = 0 is eliminated.

Example 4.14. Let a non-unit speed space curve be

β (t) =
(
t cos t − sin t, cos t + t sin t,

t2

2

)
,

.

Figure 4: The curve α (t) = (t cos t − sin t, cos t + t sin t, t)

Figure 4. Then the first, second and third derivative vectors of β (t) are as follows:

β′ (t) = (−t sin t, t cos t, t) ,

β′′ (t) = (−t cos t − sin t, cos t − t sin t, 1) ,

β′′′ (t) = (−2 cos t + t sin t,−t cos t − 2 sin t, 0) ,
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Since
∥∥∥β′ (t)∥∥∥ = v (t) =

√
2 |t| , the curve be β (t) is not an unit speed curve. So the Frenet vectors, the curvature, the

torsion, the Darboux vector, the unit vector in direction of the Darboux vector of the curve β(t) are obtained as follows:

T (t) =

(
−

t
√

2 |t|
sin t,

t
√

2 |t|
cos t,

t
√

2 |t|

)
,

N (t) =
( t
|t|

cos t,
t
|t|

sin t, 0
)
,

B (t) =

(
1
√

2
sin t,−

1
√

2
cos t,

1
√

2

)
,

κ (t) =
1
√

2 |t|
, τ (t) =

1
2t
,

W (t) =
(

t − t3

√
2 |t|

sin t,
t3
− t
√

2 |t|
cos t,

t + t3

√
2 |t|

)
,

C (t) =

 t − t3

√
2 |t| (1 + t4)

sin t,
t3
− t

√
2 |t| (1 + t4)

cos t,
t + t3

√
2 |t| (1 + t4)

 .
Now, let’s examine the left and right limits of the vectors T(t) and N(t). Since lim

t→0+
T (t) , lim

t→0−
T (t), lim

t→0+
N (t) ,

lim
t→0−

N (t) and lim
t→0+

W (t) , lim
t→0−

W (t), there is no limit at t = 0. So the tangent vector and principal normal vector are

discontinuous at t = 0. And, it is clear that, the curvature is not differentiable at t = 0. So, to solve the problem at
t = 0, let’s create the modified orthogonal frame of the curve. The modified orthogonal frame with the curvature κ (t)
of the non-unit speed curve β (t) is gotten as follows:

E1 (t) = (−t sin t, t cos t, t) ,

E2 (t) =
(√

2t cos t,
√

2t sin t, 0
)
,

E3 (t) =
(√

2t2 sin t,−
√

2t2 cos t,
√

2t2
)
,

where,
⟨E1 (t) ,E2 (t)⟩ = ⟨E2 (t) ,E3 (t)⟩ = ⟨E1 (t) ,E3 (t)⟩ = 0,

⟨E1 (t) ,E1 (t)⟩ = ⟨E2 (t) ,E2 (t)⟩ = 2t2, ⟨E3 (t) ,E3 (t)⟩ = 4t4

and
E1 (t) ∧ E2 (t) = E3 (t) ,

E2 (t) ∧ E3 (t) =
(
−2t3 sin t, 2t3 cos t, 2t3

)
= v4(t)κ2(t)E1 (t) ,

E3 (t) ∧ E1 (t) =
(
2
√

2t3 cos t, 2
√

2t3 sin t, 0
)
= v2(t)E2 (t) .

Also, the curvature, the torsion, the Darboux vector and the unit vector in direction of the Darboux vector of the
modified orthogonal frame with the curvature κ (t) of the non-unit speed curve β (t) are as following:

κ2 (t) =
1

2t2 , τ (t) =
1
2t
,

D (t) =
(

1 − t2

√
2

sin t,
t2
− 1
√

2
cos t,

1 + t2

√
2

)
,
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G (t) =

 1 − t2

√
2(1 + t4)

sin t,
t2
− 1

√
2(1 + t4)

cos t,
1 + t2

√
2(1 + t4)

 .
Thus, instead of the Frenet frame of the curve, which causes problem at t = 0, the properties of the curve at this point
can be examined with this modified orthogonal frame.

5. Conclusions

At singular points (or sharp points) on the analytical curves (or the discontinuous curves), one or more of
the Frenet vectors, or the curvature and torsion functions, cannot be differentiated because their right and
left limits are not the same. At these points, the use of the modified orthogonal frame instead of the Frenet
frame is sufficient and necessary to solve the problem at that point. Apart from this, there is no harm in
creating a modified orthogonal frame of any regular curve. Just like the Frenet frame, the characteristic
features of the curve can also be examined with the modified orthogonal frame. Since the Frenet frame
provides more ease of operation, the modified orthogonal frame is not preferred much in studies on regular
curves. In this study, we have shown that the modified orthogonal frame works well not only for unit
speed curves, but also for non-unit speed curves.
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