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Abstract. In this paper, we study tubular hypersurfaces according to one of the extended Darboux frame
field in Euclidean 4-space. We obtain the Gaussian and mean curvatures of tubular hypersurfaces according
to extended Darboux frame field of first kind and give some results for them. Also, we prove a theorem
about linear Weingarten tubular hypersurface and construct an example.

1. INTRODUCTION

A canal surface is formed by the envelope of the spheres whose centers lie on a curve and radii vary
depending on this curve [18]. In case of a constant radius function, the envelope is called tubular or pipe
surface [19]. Also for a canal surface, if the center curve is a straight line, then it becomes a revolution
surface. Canal surfaces (especially tubular surfaces) have been applied to many fields, such as the solid
and the surface modeling for CAD/CAM, construction of blending surfaces, shape re-construction and so
on. In this context, canal and tubular (hyper)surfaces have been studied by many geometers in Euclidean,
Minkowskian, Galilean or pseudo-Galilean spaces (see [7], [14], [20]-[24], [28]-[30], [32], [34]-[37], and etc).

On the other hand, Frenet frame has been used in lots of studies about curves and surfaces, but sometimes
scienticists have needed alternative frames because Frenet frame cannot be identified at the points where
the curvature is zero. Therefore, new alternative frames to the Frenet frame such as Bishop frame, Darboux
frame or extended Darboux frame have been defined by geometers and the theories of curves and surfaces
have been started to handle according to these alternative frames (see [2], [3], [9]-[13], [25], [27], [33], and
etc).

After recalling some basic notions about one type of extended Darboux frame field and the curvatures
of hypersurfaces in E* in the second section of this paper, we deal with tubular hypersurfaces according
to extended Darboux frame field of first kind in E* in the third section. We obtain the Gaussian and
mean curvatures of tubular hypersurface according to extended Darboux frame field of first kind and give
some results when the curve which constructs the tubular hypersurfaces is (unit speed) asymptotic or line
of curvature on tubular hypersurface. Finally, we prove a theorem that states the tubular hypersurface
according to extended Darboux frame field of first kind in E* is a linear Weingarten hypersurface.
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2. PRELIMINARIES

_)
Let {e1, €5, €3, €4} be the standart basis of Euclidean 4-space EL IS = (51,52,53,54), t = (t1,t,t3,t4) and
T = = (v1, v, V3, vs) are three vectors in E*, then the inner product and vector product are given by

H
<_S), t > = 51t] + Sptp + 53t3 + Suty

and
€1 € €3 €4
TXEXT =det| 5 2 % %
1 b i3 f4
U1 U2 U3 U4
respectively. Also, the norm of the vector 5 is ||_S>H = <_s),_s)> Let M C E* denote a regular hypersurface

and a : I € R — M be a unit speed curve. If {T, n, by, b,} is the moving Frenet frame along «, then the Frenet
formulas are given by [15]

T 0 T
n 0 kz 0 n
b —kz 0 ks by |’
b’ ks 0 b,

where T, n, b; and b, denote the unit tangent, the principal normal, the first binormal and the second
binormal vector fields; k1, k> and k3 are the curvature functions of the curve a.

Here, we will recall the extended Darboux frame field of first kind (for simplicity, we'll call it ED'-frame
field throughout this paper) and for details about the construction of extended Darboux frame fields, we
refer to [13].

We consider an embedding W : U c E3 — E*, where U is an open subset of E>. Now, we denote
M = ¥(U) and identify M and U through the embedding W. Let @ : I — U be a regular curve and we have
acurve a : I — M c E* defined by a(s) = W(a(s)) and so, the curve a is on the hypersurface M. If M is
an orientable hypersurface oriented by the unit normal vector field N in E* and a is a Frenet curve of class
C"(n > 4) with arc-length parameter s lying on M, then we denote the unit tangent vector field of the curve
by T and denote the hypersurface unit normal vector field restricted to the curve by N, i.e.

T(s) = &'(s) and N(s) = N(a(s)).

The differential equations of ED-frame fields of first kind {T, E, D, N} of the curve a on M in E* by matrix
notation can be given as

T K 0 Kn T
E’ 0 k2 Tl E
g
D’ K; 0 ’L’% D |’ @
N’ T; —T; 0 N

where (E’,N) = T (D’,N) = T (T',E) = K;, (E’,D) = K; and ’l’; and K; are called the geodesic torsions and
geodesic curvatures of order i, respectively. Also, (T’,N) = «, is the normal curvature of the hypersurface
in the direction of the tangent vector T [13].

Now, the relation matrix may be expressed as [13]

T 1 0 0 0 T
n | |0 cosgr cospy coss E %)
by | 7| 0 cosyy cosiyp cosis D
by 0 cosf; cosBO, cosHBs N
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and
T 1 0 0 0 T
E| |0 cos¢; cosyp cosb6q n 3)
D| | 0 cos¢a cosyn cosBs by |
N 0 cos¢s cosiys cosO3 b,

Also, we have

K}} =(T",E) = ki cos 1, kn = (T, N) = ky cos 3,
T; = —¢) sin 1 cos ¢3 — Y] sinyy cos Pz — O] sin 61 cos O3
+ kp(cos ¢ cos Y3 — cos Y1 cos P3) + k3(cos Y1 cos O3 — cos 01 cos 3),
T; = —¢}, sin ¢ cos 3 — Y} sin P cos 3 — 67 sin 6, cos 63 4)
+ kp(cos ¢ cos Y3 — cos Yr; cos P3) + ks(cos P2 cos O3 — cos B, cos 3),
K; = _‘Pi sin (1 cos ¢y — 4)’1 sinq cos Y, — 61 sin 01 cos 6,
+ kp(cos 1 cos Y, — cos Y1 cos P2) + k3(cos P cos By — cos 01 cos ).

Furthermore, the differential geometry of different types of (hyper)surfaces in 4-dimensional spaces has
been a popular topic for geometers, recently ([1], [4], [5], [6], [8], [16], [17], [26], and etc). If

Y:UcE —E* (5)
(S/ t/ v) — \p(sl t/ v) = (\yl (S, tr U), \IIZ(S, tr U), \II3(S, tr U)r \II4(S, tr U))

isa hypersurface in E4, then the unit normal vector field, the matrix forms of the first and second fundamental
forms are

_ Yy x¥ x VY,
N = X0, X 0, ®)
g1 g12 913
[gi]l=| 921 922 923 (7)
g1 g3 Y933
and
hin hi his
[hij] =| ha h2o has |, (8)
hs1 hzx  hss

respectively. Here g;; = <\I/l,i,‘lfv].>, hij = <\Ijviuj,N\y>, v, = ‘N(UI;%’:Z’”‘*), W, = MS#’;’””, i,j €{1,2,3}. Also,
the shape operator of the hypersurface (5) is

S = [a;] = [g"1.[hi;], )

where [g"] is the inverse matrix of [g;j].
With the aid of (6)-(9), the Gaussian and mean curvatures of a hypersurface in E* are given by

det[hij]
K = det(S) = dotigi] (10)
ij
and
H= %tr(S), (11)

respectively [31]. We say that a hypersurface is flat or minimal, if it has zero Gaussian curvature or zero
mean curvature, respectively.
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3. TUBULAR HYPERSURFACES ACCORDING TO ED!-FRAME FIELD IN EUCLIDEAN 4-SPACE

In this section, we obtain the Gaussian and mean curvatures of tubular hypersurfaces according to
ED!-frame field in Euclidean 4-space E* and give some results for these curvatures when the curve a which
constructs the tubular hypersurface is an asymptotic curve, a unit-speed asymptotic curve and a line of
curvature lying on M.

Let @ : I — M be a unit speed curve lying on a regular hypersurface M and we consider the tubular
hypersurface 7~ according to ED'-frame field of « in E* given by

T (s, t,v) = a(s) = p [(cos t cosv) E(s) + (sint cos v) D(s) + (sinv) N(s)], (12)

where a(s) is the center curve of tubular hypersurface 7, p € R is constant radius, s € [0,/] and ¢, v € [0, 27).

v

From now on, we state « = a(s), T = T(s), E = E(s), D = D(s), N = N(s) and we will consider the "+" as “+".

Firstly, from (1) and (12) the first derivatives of the tubular hypersurface (12) are obtained as

Ts = (1 — p(icy cos t cos v + Ky sinv))T— p(K2 cosvsint + 1} sinv)E

g g
+ p(Kgcostcosv -7 sinv)D + pcosv(’c; cost +1; sint)N,
(13)
Tt =—(psintcosv) E + (pcostcosv) D,
T»=—(pcostsinv)E — (psintsinv) D + (p cosv) N.
From (6) and (13), the unit normal vector field of 7~ in E* is
N = (costcosv) E + (sintcosv) D + (sinv) N. (14)
Also, the coefficients of the first fundamental form are
2 2
g1 = (p K; cosusint + T; sin U)) + (p COS U (T; cost + T; sin t))
+ (p (K; €Ostcos v — T sin v)) Z4 (—1 + Ky COs £ COS  + PKy Sin v) 2,
g12 = go1 = p* cosv (K; cos v +sinv(ty sint — 7, cos t)) , (15)
J13 = ga1 = p* (T; sint + T, cos t) ,
g2 = p?cos’v, g3 = gz =0, g3z = p*
and it follows that
det[g;;] = p*(-1 + ‘[)K; costcosv + pik, sinv)? cos? v. (16)

Now, for obtaining the coefficients of the second fundamental form, we give the second derivatives
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Tow; = % of the tubular hypersurface (12):
To = TIT+T2E+T3D + TIN,
Tt =Tis = (pK; sint cos v) T - (pK; cos t cos v) E- (pK; sint cos v) D

- (p(T; sint — 77 cos t) cos v) N,

Teo =T s = (p (K; sinvcos t — &, cos v)) T+ (p (K; sinvsint — ’(!1] Cos v)) E
- (p (K; sinv cos t + 7 cos v)) D- (p (T; cos t + 7;sin t) sin v) N,

Tu =—(pcostcosv) E - (psintcosv)D,

Tt =Tt = (psintsinv) E — (pcostsinv) D,

Tw =—(pcostcosv)E - (psintcosv) D — (psinv) N,

where
1(,.2
712 | * (Kg
ss P 1 2 . 1y/
—(Tg%n cost + gk, sint + (Kg) cost)cosv

cosvsint + 7, sin v) — (k) sinv

T2=-p ((K;)2 +(15)° + (T;)z) costcos v + xy(1 — pi, sinv)
= p((=1575 + (15)) sino + (1574 + (k7)) sin t cos v),

T3=-p ((K§)2 + (75)2) sintcos v + (757y — (K3)) cos t cos v
+ (157 + (17)') sinv),

1 2
9 9

- K (—1 + picy COs £ COS D + picy Sin v) +p ((T;)/ cost + (73)’ sin t) Cos V.

4_ 102 o : 20,2 :
Tss = —pTy(K;sintcosv + 1, 8inv) + pty(i; cos t cosv — T, sinv)

Thus, from (8), (14) and (17), the coefficients of the second fundamental form are

hi=-p (((K;)2 + (T;)z) cos? t + (K2)? + 2112 sint cos £ + (12)? sin’ t) cos? v
-p ((T;)2 + (1) + (K,,)Z) sinv — kg (=1 + 2pK, sinv) cos t cos v

- pK; (T; sint — T; cos t) sin(2v) + x,, sin v,

hia = hay = —p (K; Cos v + sin v(’c; sint — ’[; cos t)) Cos v,
. 1 2o
hiz3 =h3 = —p (Tg cost+ 1y smt),

hy = —pcos?v, hoz = hzp =0, h3z = —p

and it implies that

det[h;;] = —p2 cos? v (K; costcosv + Kk, sin v) (—1 + pK; costcosv + pi, sin v) .

So, from (10), (16) and (19), we have

Proposition 3.1. The Gaussian curvature of the tubular hypersurfaces (12) in E* is

1
q

_pz(—l + pK; costcosv + pk, sinv)’

K, COStCOSV + Kk, SINV

79

(17)

(18)

(19)

(20)
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Corollary 3.2. The Gaussian curvature of the tubular hypersurfaces (12) in E* does not depend on the geodesic
curvature of order 2 and geodesic torsions of order 1 and order 2.

Corollary 3.3. The tubular hypersurfaces (12) in E* is flat if and only if

K; costcosv = —k, Sinv

holds.
Corollary 3.4. Ifk; = i, = 0, then the tubular hypersurfaces (12) in E* is flat.

Also, after finding the inverse of the matrix of the first fundamental form and using this and (18) in (9),
the shape operator of the tubular hypersurface (12) is obtained by

Siu Sz Sis
S=| Sn Sx» Sx |, (21)
S31 S Sz
where
K}] costcosv + K, sinv
Sii=- —, S =513=0,
1
—1 + pij cos tcos v + pi, Sin v
secv (K; +tanv (T; sint — T; cos t))
So1 = , Sp=——,53=0,
P (— secv + piky cost + pi, tan U)
1 2 o
T,Cost + T, sint 1
S31 = 4 ! , S32=0,553=——.
1 .
P (—1 + pKycostcosv + pK, sin v) p

Hence from (11) and (21), we get

Proposition 3.5. The mean curvature of the tubular hypersurfaces (12) in E* is

2-3p (K; costcosv + K, sinv)
H= .
3p (—1 + Py COSECOS U + PK, sin v)

(22)

Corollary 3.6. The mean curvature of the tubular hypersurfaces (12) in E* does not depend on the geodesic curvature
of order 2 and geodesic torsions of order 1 and order 2.

Corollary 3.7. The tubular hypersurfaces (12) in E* is minimal if and only if

2
K, COstcosv + K, Sinv = — (23)

1
holds.

Corollary 3.8. If K; =k, = 0, then the tubular hypersurface (12) in E* has negative constant mean curvature with
-2
% .

Here, from (20) and (22), we can state the following theorem which gives an important relation between
Gaussian and mean curvatures:
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Theorem 3.9. The Gaussian curvature K and the mean curvature H of tubular hypersurfaces (12) in E* satisfy
vy 2
3H = p°K - o (24)

Also, from (21) we have

(1+Ap)* (=A + (1 + Ap)«lcostcosv + (1 + Ap) K, sinv
det(S — A\I) = — 2l P P )

(25)
p? (—1 + pK; costcosv + pk, sin v)

By solving the equation det(S — Al3) = 0 from (25), we obtain the principal curvatures of the tubular
hypersurfaces (12) in E* as follows:

Proposition 3.10. The principal curvatures of the tubular hypersurfaces (12) in E* are

k! costcosv + Kk, sinv

1
A1=A2:——and)\3=— J 1 - .
P -1+ ng costcosv + pPKy SINU

(26)

Furthermore, if a curve «a is a unit-speed asymptotic curve parametrized by arc-length on an oriented
hypersurface M in E*, then we have

d

K, =0, K; =k, K; =kpcos @, 751, = —kysing, T; =k + e (27)

where ¢ denotes the angle between D and B, [13]. Thus using (27), we have

Corollary 3.11. If the curve « is a unit-speed asymptotic curve lying on M, then the Gaussian and mean curvatures
of tubular hypersurface (12) in E* are

ki costcosv
K=- 28
p? (=1 + pky cost cosv) 28)

and
2 —3pkj costcosv

" 3p(~1 + pki cost cosv)’ (29)

respectively.

Corollary 3.12. If the curve « is a unit-speed asymptotic curve lying on M, then the Gaussian and mean curvatures
of tubular hypersurface (12) in E* are independent of the angle ¢.

Also in [24], the authors have studied on canal and tubular hypersurfaces according to the Frenet frame
in E* and they have obtained the Gaussian and mean curvatures of tubular hypersurface

T (s, t,v) = a(s) + p [(cos t cosv) n(s) + (sint cos v) by (s) + (sinv) by(s)] (30)
as (28) and (29). Therefore

Theorem 3.13. If the curve a is a unit-speed asymptotic curve lying on M, then the Gaussian and mean curvatures
of tubular hypersurfaces (12) according to ED'-frame field and (30) according to Frenet frame coincide.

On the other hand, the curve a lying on M is a line of curvature if and only if T; = ’[; = 0[13]. So, we
have

Corollary 3.14. If the curve a is line of curvature lying on M, then the Gaussian and mean curvatures of tubular
hypersurface (12) in E* are (20) and (22) respectively.
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Finally, we will give a theorem about linear Weingarten tubular hypersurface according to ED!-frame
field of unit speed curve « lying on M in E*. We know that, a hypersurface is called a linear Weingarten
hypersurface, if it satisfies

aH +bK =, (31)

where g, b, ¢ are not all zero constants. Thus, we have
Theorem 3.15. The tubular hypersurface (12) in E* is a linear Weingarten hypersurface.
Proof. We know that, the relation between the mean and Gaussian curvatures of the tubular hypersurface

(12) in E* is given by (24). So, if we takea =3, b= —p?and ¢ = _?2 in (31), the proof completes. [J

Example 3.16. We take the unit speed curve

a(s) = (sin(%),cos(:)’;) sm(ts) cos(%s)) (32)

on the hypersphere M...x* + y* + z2 + t* = 2 in E*. The Frenet apparatus of this curve is

T = (3cos( ) 351n( )4cos(5) 4s1n(‘§f)),

n= _\/TT (9s1n( ) 9cos(%),16sin(%),16cos(%)),
(33)
by = %(4cos(5) 4sm(5) BCOS(%) 3sm<%)),
by =-—= (16sin(%),16 cos(%),—9 sin(%),—9 cos(%))
and N,
VBT 8 _ 1
“TE T e T o
Also, we have the ED'-frame fields of unit speed curve a as
T = <3cos(5) 3s1n( ) 4cos(%) 4s1n(§))
E = %rz(sm(?;) COS(%) —sm(%s) —Cos(455)),
(35)

D=

Q=

(—4 cos (%) ,4 sin(%) ,3cos(¥), -3 sin(%)),

N =3 in (8] (). ). cx(4)

and the normal curvature, geodesic curvatures and geodesic torsions of order 1 and 2 are obtained as

1 7, 122,
R AN SR A e

respectively. Hence using (35) in (12), we get the tubular hypersurface according to ED'-frame field in E* as

—%pCOS(SS)COSUSIHt-i‘ 2sm( (2+ \/_p(cosvsmt+smv))

%p sin(%) cosvsint + % cos(i.—s) (2 + \/Ep (cosvsint + sin v)) ,
T (s, t,0) = (37)
2pcos(E)cosvsint + 1 sin(¥) (2 + V2p (—cosvusint + sinv)),

ps1n(4s)cosvsmt+ Cos( )(2+ \/_p( Cosvsmt+smv))
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and from (20), (22) and (36), we obtain the Gaussian and mean curvatures of the tubular hypersurface (37) as

Ke— 7 costcosv —25sinv and H = 100 — 3 V2p (7 cos t cos v — 25 sin v)

p? (7p costcosv —25 ( V2 + psin v)) 3p (—50 + V2p (7 cos t cos v — 25 sin v))/

(38)

respectively. In the following figures, one can see the projections of the tubular hypersurface (37) forv = % and p = 3
into x1x2x3 (A), x1x2x4 (B), x1x3x4 (C) and xox3x4-spaces (D).

(a) (b) (c) (d)

Figure 1
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