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On the Stability of Finite Difference Scheme for the Schrödinger
Equation Including Momentum Operator

Nigar Yıldırım Aksoya, Emel Sarıahmeta

aDepartment of Mathematics, Faculty of Arts and Sciences, Kafkas University, 36100 Kars, Turkey

Abstract. In this paper, we apply the finite difference method to a Schrödinger equation which contains
a momentum operator. For this, we constitute a difference scheme. A priori estimate for the solution of
difference scheme is obtained. By using this estimate, we prove that the difference scheme is unconditionally
stable.

1. INTRODUCTION

Schrödinger equation,

iℏ
∂u
∂t

(ς, t) =
[
−
ℏ2

2m
∇

2 + V(ς, t)
]

u(ς, t) = (T + V) u(ς, t)

is a partial differential equation, where i2 = −1, ς and t are the variables of space and time, respectively,
u(ς, t) is a wave function; ℏ = h

2m is the reduced Planck’s constant; h is the Planck’s constant; m is the mass

of particle; T = p2

2m is the kinetic energy operator; p = −iℏ∇ is the momentum operator; V = V(ς, t) is the
potential energy operator; ∇ is the gradient operator; ∇2 is the Laplace operator.

As seen, the left hand side (l.h.s.) of above-mentioned equation describes the ratio of change of wave
function u according to time, namely; Schrödinger equation is a equation describing how the energy of a
quantum mechanical system evolves in time. It is a very sophisticated model applicable to many disciplines
in engineering and applied sciences.

Many researchers analyzed the solutions of different versions of Schrödinger equation by using various
methods (exactly, approximately or numerically). For example, Khuri and Sadighi et al. applied the
Adomian decomposition method to Schrödinger equation [18, 25]; Biazar et al., He, Mousaa et al. studied
the linear and nonlinear Schrödinger equations by Homotopy perturbation method [4, 12, 22]; Alomari et al.,
Ghanbari examined the linear and nonlinear Schrödinger equations by Homotopy analysis method [2, 11];
Hosseinzadeh, Wazwaz analyzed the linear and nonlinear Schrödinger equations by Variational iteration
method [13, 29]; Iskenderov et.al., Mahmudov, Yagub et al., Yıldırım Aksoy examined the solvability of
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Schrödinger equations by Galerkin’s method [15, 16, 21, 31–33]. Besides, there is a great variety of solution
procedure for Schrödinger equation.

In this work, we apply the finite difference method to a linear Schrödinger equation. In studies [3, 7,
8, 10, 16, 27], the solutions of linear Schrödinger equations is examined by finite difference method and,
in that studies, generally, the stability and convergence of difference scheme are shown. Also, in studies
[5, 9, 14, 17, 23, 24, 26, 28, 30] the finite difference method is applied to the boundary value problems for
nonlinear Schrödinger equations and in most of them, the stability, error and convergence of method are
analyzed.

In the most of studies mentioned above, Schrödinger equations do not include the momentum operator.
Especially, [27], the numerical solution of linear Schrödinger equation including a momentum operator is
investigated. For this, the finite difference method is applied to the considered problem and the conditionally
stability of method is proved. As distinct from the earlier studies in literature, in this work, we examine a
boundary value problem for the linear Schrödinger equation including a momentum operator and apply the
finite difference method to it. We analyze the difference scheme and prove that scheme is unconditionally
stable.

Consider the following problem for linear Schrödinger equation including a momentum operator;

i
∂u
∂t
+ a0
∂2u
∂ς2 + ia1

∂u
∂ς
− a2(ς)u + a3(ς)u = 1(ς, t), (ς, t) ∈ Ω (1)

u(ς, 0) = f (ς), ς ∈ I (2)
u(0, t) = u(X, t) = 0, t ∈ (0,T) (3)

where I = (0,X) ,Ω = I× (0,T), a0, a1 > 0 are real numbers; a2(ς) and a3(ς) are real valued functions such that

0 < a2(ς) ≤ µ0 almost everywhere (a.e.) in I, µ0 = const. > 0 , (4)
a3 ∈ L2(I), |a3(ς)| ≤ b0 a.e. in I, (5)

b0 > 0 is a given number; f ∈ W̊2
2(I), 1 ∈W0,1

2 (Ω).
Here, L∞(I) is the space of all functions that are essentially bounded on I equipped with the norm

∥u∥L∞(I) = ess supI |u| ;

Wr
p(Ω) ≡

{
u ∈ Lp(Ω) : Dγu ∈ Lp(Ω) for every multi-index γwith

∣∣∣γ∣∣∣ ≤ r,
where Dγu is the weak(or distributional) partial derivative

}
and

W̊r
p(Ω) ≡ the closure of C∞0 (Ω) in the space Wr

p(Ω)

[1].
In [19], it was shown that the following theorem is valid:

Theorem 1.1. Assume that (4) and (5) are satisfied and f ∈ W̊2
2(I), 1 ∈W0,1

2 (Ω). Then there exists a unique solution
u ∈ W̊2,1

2 (Ω) of the problem (1)-(3) and the following estimate holds

||u(., t)||W̊2,1
2 (Ω) ≤ c0(|| f ||W̊2

2 (I) + ||1||W0,1
2 (Ω)) (6)

where c0 > 0 is a constant independent of f , 1.

2. NOTATIONS AND DIFFERENCE SCHEME

In this section, we will denote the notations used in the paper and discretize the problem (1)-(3). Later,
we will express some lemmas and inequalities used in the paper.
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Let α, β be any positive integers, h = X
α−1 , τ =

T
β ,

Ωh =

{
ςk : ςk = kh −

h
2
, k = 1, α − 1, ς1 −

h
2
= 0, ςα−1 +

h
2
= X,

}
,

Ωτ =
{
tl : tl = lτ, l = 0, β

}
,

Ωτh = Ωh ×Ωτ.

Let ukl, k = 0, α, l = 0, β be the numerical approximation of u(ς, t) at the point (ςk, tl) on Ωτh.
Introduce the following notations:

δtukl =
ukl − ukl−1

τ
, δςukl =

ukl − uk−1l

h
,

δςukl =
uk+1l − ukl

h
, δςςukl =

δςukl − δςukl

h
=

uk+1l − 2ukl + uk−1l

h2 ,

(v,w) = h
α−1∑
k=1

vkwk, ∥v∥p =
p

√√√
h
α−1∑
k=1

|vk|
p, ∥v∥∞ = max

1≤k≤α−1
|vk| ,
∥∥∥δςv∥∥∥2 =

√√√
h
α−1∑
k=1

∣∣∣δςvk

∣∣∣2
where v,w ∈ Vh = {v : v = (v1, v2, ..., vα−1)} are discrete grid functions onΩh.We denote by ∥.∥2, ∥.∥∞ , (., .) the
discrete norms on spaces L2(I), L∞(I) and discrete inner product on L2(I), respectively. Also, throughout this
paper, we denote by ck = 1, 2, ..., 5 the positive constants independent from τ, h and m.

Now, we present finite difference scheme of problem (1)-(3) as follows:

iδtukl + a0δςςukl + ia1δςukl − a2kukl + a3kukl = 1kl, k = 1, α − 1, l = 1, β, (7)

uk0 = fk, k = 0, α, (8)

u0l = uαl = 0, l = 1, β, (9)

where the grid functions a2k, a3k, 1kl and fk are Steklov averages of the functions a2(ς), a3(ς), 1(ς, t) and f (ς)
respectively, defined by

a2k =
1
h

ςk+h/2∫
ςk−h/2

a2(ς)dς, k = 1, α − 1

a3k =
1
h

ςk+h/2∫
ςk−h/2

a3(ς)dς, k = 1, α − 1

1kl =
1
τh

tl∫
tl−1

ςk+h/2∫
ςk−h/2

1(ς, t)dςdt, k = 1, α − 1, l = 1, β

fk =
1
h

ςk+h/2∫
ςk−h/2

f (ς)dς, k = 1, α − 1, f0 = fα = 0

[6]. Also, from conditions (4) and (5), the inequalities

0 ≤ a2k ≤ µ0, k = 1, α − 1, (10)

0 ≤ |a3k| ≤ b0, k = 1, α − 1 (11)

is written.
In the paper, the lemmas and inequalities we need are as follows:
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Lemma 2.1. (Discrete Gronwall’s Inequality [9]): Assume that the nonnegative grid functions{
w(z), y(z), z = 1, 2, ..., β, βτ = T

}
satisfy the inequality

w(z) ≤ y(z) + τ
z∑
ι=1

Bιw(ι),

where Bι
(
ι = 1, 2, ..., β

)
are nonnegative constant. Then, for any 0 ≤ z ≤ β, there is

w(z) ≤ y(z) exp

zτ z∑
ι=1

Bι

 .
Lemma 2.2. (Summation by Parts Formula): For any two grid functions

v,w ∈ Vh = {v : v = (v0, v1, v2, ..., vα−1, vα) , v0 = vα = 0} ,we have

h
α−1∑
k=1

(
δςςvk

)
wk = −h

α∑
k=1

(
δςvk

) (
δςwk

)
.

Lemma 2.3. (∈ −Cauchy′s inequality [20]): For any ∈> 0 and arbitrary a and b, the inequality

ab ≤
∈

2
a2 +

1
2 ∈

b2

is valid.

Lemma 2.4. (Young’s İnequality): Let a, b ≥ 0. Then,

ab ≤
1
p

ap +
1
q

bq

when 1
p +

1
q = 1 and p ∈ (1,+∞) .

3. THE STABILITY OF DIFFERENCE SCHEME

In this section, firstly, we obtain an estimate for solution of scheme (7)-(9). Later, using this estimate we
prove the stability of scheme.

Theorem 3.1. Assume that (4) and (5) are satisfied and f ∈ W̊2
2(I), 1 ∈ W0,1

2 (Ω). Then, the solution ukm of scheme
(7)-(9) for any m ∈

{
1, 2, ..., β

}
satisfies the estimate

h
α−1∑
k=1

|ukm|
2 + 2h

m∑
l=1

α−1∑
k=1

|ukl − ukl−1|
2 + 2a1τ

m∑
l=1

|uα−1l|
2 + 2a1τ

m∑
l=1

α−1∑
k=1

|ukl − uk−1l|
2
≤

c1

h α−1∑
k=1

∣∣∣ fk∣∣∣2 + τh β∑
l=1

α−1∑
k=1

∣∣∣1kl

∣∣∣2 . (12)

Proof. For any grid function ξkl defined on Ωτh with conditions ξ0l = ξαl = 0 for l = 1, β, scheme (7)-(9) is
equivalent to the summation identity

ih
α−1∑
k=1

δtuklξkl + a0h
α−1∑
k=1

δςςuklξkl + ia1h
α−1∑
k=1

δςuklξkl −

h
α−1∑
k=1

a2kuklξkl + h
α−1∑
k=1

a3kuklξkl = h
α−1∑
k=1

1klξkl, (13)
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where ξkl is the conjugate of ξkl. If we substitute τukl for ξkl in (13) and apply the formula of summation by
parts, we get

ihτ
α−1∑
k=1

δtuklukl − a0hτ
α−1∑
k=1

∣∣∣δςukl

∣∣∣2 + ia1hτ
α−1∑
k=1

δςuklukl −

hτ
α−1∑
k=1

a2k |ukl|
2 + hτ

α−1∑
k=1

a3k |ukl|
2 = hτ

α−1∑
k=1

1klukl. (14)

If we extract its complex conjugate from (14) and then, use the relations

τ
(
δtuklukl + δtuklukl

)
= |ukl|

2
− |ukl−1|

2 + |ukl − ukl−1|
2 (15)

h
(
δςuklukl + δςuklukl

)
= |ukl|

2
− |uk−1l|

2 + |ukl − uk−1l|
2 (16)

we get

h
α−1∑
k=1

(
|ukl|

2
− |ukl−1|

2 + |ukl − ukl−1|
2
)
+ a1τ

α−1∑
k=1

(
|ukl|

2
− |uk−1l|

2 + |ukl − uk−1l|
2
)
=

2hτ
α−1∑
k=1

Im
(
1klukl

)
f or l = 1, β. (17)

If we sum all equalities in (17) in l from 1 to m ≤ β and consider

m∑
l=1

α−1∑
k=1

(
|ukl|

2
− |ukl−1|

2
)
=

α−1∑
k=1

(
|ukm|

2
− |uk0|

2
)
=

α−1∑
k=1

|ukm|
2
−

α−1∑
k=1

∣∣∣ fk∣∣∣2
m∑

l=1

α−1∑
k=1

(
|ukl|

2
− |uk−1l|

2
)
=

m∑
l=1

(
|uα−1l|

2
− |u0l|

2
)
=

m∑
l=1

|uα−1l|
2

by (8) and (9), we obtain from (17) the inequality

h
α−1∑
k=1

|ukm|
2 + h

m∑
l=1

α−1∑
k=1

|ukl − ukl−1|
2 + a1τ

m∑
l=1

|uα−1l|
2 +

a1τ
m∑

l=1

α−1∑
k=1

|ukl − uk−1l|
2
≤ 2hτ

m∑
l=1

α−1∑
k=1

∣∣∣1kl

∣∣∣ |ukl| + h
α−1∑
k=1

∣∣∣ fk∣∣∣2 .
Let’s distinguish m-th term from first summation in the right-hand side (r.h.s.) of above inequality and
apply ϵ−Cauchy′s inequality to distinguished term. Then, if we take ϵ = 2τ and use Young’s inequality we
get

h
α−1∑
k=1

|ukm|
2 + 2h

m∑
l=1

α−1∑
k=1

|ukl − ukl−1|
2 + 2a1τ

m∑
l=1

|uα−1l|
2 + 2a1τ

m∑
l=1

α−1∑
k=1

|ukl − uk−1l|
2
≤

2hτ
m−1∑
l=1

α−1∑
k=1

∣∣∣1kl

∣∣∣2 + 4Tτh
α−1∑
k=1

∣∣∣1km

∣∣∣2 + 2hτ
m−1∑
l=1

α−1∑
k=1

|ukl|
2 + 2h

α−1∑
k=1

∣∣∣ fk∣∣∣2
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which is equal to

h
α−1∑
k=1

|ukm|
2 + 2h

m∑
l=1

α−1∑
k=1

|ukl − ukl−1|
2 + 2a1τ

m∑
l=1

|uα−1l|
2 + 2a1τ

m∑
l=1

α−1∑
k=1

|ukl − uk−1l|
2
≤

4Thτ
β∑

l=1

α−1∑
k=1

∣∣∣1kl

∣∣∣2 + 2hτ
m−1∑
l=1

α−1∑
k=1

|ukl|
2 + 2h

α−1∑
k=1

∣∣∣ fk∣∣∣2 (18)

for any m ∈
{
1, 2, ..., β

}
. Since all terms in the l.h.s. of (18) are non-negative, it is written that

h
α−1∑
k=1

|ukm|
2
≤ 4Thτ

β∑
l=1

α−1∑
k=1

∣∣∣1kl

∣∣∣2 + 2hτ
m−1∑
l=1

α−1∑
k=1

|ukl|
2 + 2h

α−1∑
k=1

∣∣∣ fk∣∣∣2 . (19)

In (19), using discrete Gronwall’s Inequality, we obtain

h
α−1∑
k=1

|ukm|
2
≤ c2

h α−1∑
k=1

∣∣∣ fk∣∣∣2 + τh β∑
l=1

α−1∑
k=1

∣∣∣1kl

∣∣∣2 for any m ∈
{
1, 2, ..., β

}
. (20)

If we use the inequality (20) in (18), we get for any m ∈
{
1, 2, ..., β

}
h
α−1∑
k=1

|ukm|
2 + 2h

m∑
l=1

α−1∑
k=1

|ukl − ukl−1|
2 + 2a1τ

m∑
l=1

|uα−1l|
2 + 2a1τ

m∑
l=1

α−1∑
k=1

|ukl − uk−1l|
2
≤

c3

h α−1∑
k=1

∣∣∣ fk∣∣∣2 + τh β∑
l=1

α−1∑
k=1

∣∣∣1kl

∣∣∣2 (21)

which shows the hypothesis of theorem 3.1 is valid.

Theorem 3.2. Suppose that u1
kl, is a solution corresponding to the initial value f 1

k and the right side 11
kl of scheme

(7)-(9) and u2
kl is a solution corresponding to the initial value f 2

k and the right side 12
kl of scheme (7)-(9). Assume that

the conditions of theorem 3.1 are fulfilled. Let Φkl = u1
kl − u2

kl. Then, for any m ∈
{
1, 2, ..., β

}
and h, τ > 0

h
α−1∑
k=1

|Φkm|
2
≤ c4

h α−1∑
k=1

∣∣∣ f 1
k − f 2

k

∣∣∣2 + hτ
β−1∑
l=1

α−1∑
k=1

∣∣∣11
kl − 1

2
kl

∣∣∣2 .
Hence, the difference scheme (7)-(9) is unconditionally stable.

Proof. It is clear that Φkl satisfies the scheme

iδtΦkl + a0δςςΦkl + ia1δςΦkl − a2kΦkl + a3kΦkl = 1
1
kl − 1

2
kl, k = 1, α − 1, l = 1, β

Φk0 = f 1
k − f 2

k , k = 0, α

Φ0l = Φαl = 0, l = 1, β

which is equivalent to

ih
α−1∑
k=1

δtΦklΘkl + a0h
α−1∑
k=1

δςςΦklΘkl + ia1h
α−1∑
k=1

δςΦklΘkl −

h
α−1∑
k=1

a2kΦklΘkl + h
α−1∑
k=1

a3kΦklΘkl = h
α−1∑
k=1

(
11

kl − 1
2
kl

)
Θkl, (22)
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for any grid functionΘkl,whereΘkl is the conjugate ofΘkl defined onΩτh such thatΘ0l = Θαl = 0 for l = 1, β.
From (22) for Θkl = τΦkl it is written that

ihτ
α−1∑
k=1

δtΦklΦkl − a0hτ
α−1∑
k=1

∣∣∣δςΦkl

∣∣∣2 + ia1hτ
α−1∑
k=1

δςΦklΦkl −

hτ
α−1∑
k=1

a2k |Φkl|
2 + hτ

α−1∑
k=1

a3k |Φkl|
2 = hτ

α−1∑
k=1

(
11

kl − 1
2
kl

)
Φkl. (23)

with summation by parts. Extracting its complex conjugate from (23) and using (15) and (16) for Φkl, we
obtain

h
α−1∑
k=1

(
|Φkl|

2
− |Φkl−1|

2 + |Φkl −Φkl−1|
2
)
+ a1τ

α−1∑
k=1

(
|Φkl|

2
− |Φk−1l|

2 + |Φkl −Φk−1l|
2
)
=

2hτ
α−1∑
k=1

Im
((
11

kl − 1
2
kl

)
Φkl

)
f or l = 1, β. (24)

Summing all equalities in (24) in l from 1 to m ≤ β and usingΦk0 = f 1
k − f 2

k for k = 0, α, Φ0l = 0 for l = 1, β,
we have

h
α−1∑
k=1

|Φkm|
2 + h

m∑
l=1

α−1∑
k=1

|Φkl −Φkl−1|
2 + a1τ

m∑
l=1

|Φα−1l|
2 +

a1τ
m∑

l=1

α−1∑
k=1

|Φkl −Φk−1l|
2
≤ 2hτ

m∑
l=1

α−1∑
k=1

∣∣∣11
kl − 1

2
kl

∣∣∣ |Φkl| + h
α−1∑
k=1

∣∣∣ f 1
k − f 2

k

∣∣∣2 .
which is equal to

h
α−1∑
k=1

|Φkm|
2 + h

m∑
l=1

α−1∑
k=1

|Φkl −Φkl−1|
2 + a1τ

m∑
l=1

|Φα−1l|
2 +

a1τ
m∑

l=1

α−1∑
k=1

|Φkl −Φk−1l|
2
≤ 2hτ

α−1∑
k=1

∣∣∣11
km − 1

2
km

∣∣∣ |Φkm| +

2hτ
m−1∑
l=1

α−1∑
k=1

∣∣∣11
kl − 1

2
kl

∣∣∣ |Φkl| + h
α−1∑
k=1

∣∣∣ f 1
k − f 2

k

∣∣∣2 . (25)

Applying ϵ − Cauchy′s and Young’s inequalities to (25), we get

h
α−1∑
k=1

|Φkm|
2 + 2h

m∑
l=1

α−1∑
k=1

|Φkl −Φkl−1|
2 + 2a1τ

m∑
l=1

|Φα−1l|
2 + 2a1τ

m∑
l=1

α−1∑
k=1

|Φkl −Φk−1l|
2
≤

4Thτ
β∑

l=1

α−1∑
k=1

∣∣∣11
kl − 1

2
kl

∣∣∣2 + 2hτ
m−1∑
l=1

α−1∑
k=1

|Φkl|
2 + h

α−1∑
k=1

∣∣∣ f 1
k − f 2

k

∣∣∣2 (26)

by ϵ = 2τ. It is clear that all terms in the l.h.s. of (26) are non-negative. So, we write that

h
α−1∑
k=1

|Φkm|
2
≤ 4Thτ

β∑
l=1

α−1∑
k=1

∣∣∣11
kl − 1

2
kl

∣∣∣2 + 2hτ
m−1∑
l=1

α−1∑
k=1

|Φkl|
2 + h

α−1∑
k=1

∣∣∣ f 1
k − f 2

k

∣∣∣2 . (27)
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Thus, applying discrete Gronwall’s inequality to (27), we obtain

h
α−1∑
k=1

|Φkm|
2
≤ c5

hτ β∑
l=1

α−1∑
k=1

∣∣∣11
kl − 1

2
kl

∣∣∣2 + h
α−1∑
k=1

∣∣∣ f 1
k − f 2

k

∣∣∣2 for any m ∈
{
1, 2, ..., β

}
which this complete the proof.

4. Conclusion

In this paper, a finite difference scheme for the Schrödinger type equation has been introduced and
analyzed. We have obtained a priori estimate for solution of scheme. We have also proved that the
proposed scheme is unconditionally stable, without any restriction on both time and spatial step sizes.
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