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Bi-Periodic Generalized Fibonacci Polynomials

Yasemin Taşyurdua

aErzincan Binali Yıldırım University, Faculty of Arts and Sciences, Department of Mathematics, Erzincan, Turkey

Abstract. In this paper, we define bi-periodic generalized Fibonacci polynomials, which generalize Fi-
bonacci, Pell, Jacobsthal, Fermat, Chebyshev polynomials and the other well-known polynomials. We
obtain generating functions, Binet formulas and some properties of these polynomials. Also, we prove
some fundamental identities conform to the known results of Fibonacci polynomials.

1. Introduction

Polynomials in many fields of mathematics and science are emerged as the generalizations of numbers.
Fibonacci polynomials, one of the special polynomials in the literature, are a generalization of well-known
Fibonacci numbers defined by the recurrence relation fn = fn−1 + fn−2 for n ≥ 2 with initial terms f0 = 0,
f1 = 1 [1]. The nth Fibonacci polynomial fn(x), is defined by the recurrence relation

fn(x) = x fn−1(x) + fn−2(x), n ≥ 2

with initial terms f0(x) = 0, f1(x) = 1, and terms of the sequence
{
0, 1, x, x2 + 1, x3 + 2x, x4 + 3x2 + 1, ...

}
are Fibonacci polynomials. Many polynomials related to numbers defined by the recurrence relations
have been presented in different ways as generalizations of the Fibonacci polynomials called generalized
Fibonacci and generalized Fibonaci type polynomials. One of the ways of generalization is to add integers
or variables to the recurrence relation of the Fibonacci polynomials. For instance, Pell polynomials are
defined by the recurrence relation pn(x) = 2xpn−1(x) + pn−2(x) with initial terms p0(x) = 0, p1(x) = 1 for n ≥ 2.
Then Jacobsthal polynomials are defined by the recurrence relation jn(x) = jn−1(x) + 2xjn−2(x) with initial
terms J0(x) = 0, J1(x) = 1 for n ≥ 2 [2, 3]. For the parameter variables x and y in the recurrence relation,
bivariate Fibonacci polynomials are introduced by the recurrence relation

fn
(
x, y

)
= x fn−1

(
x, y

)
+ y fn−2

(
x, y

)
, fn

(
x, y

)
= 0, f1

(
x, y

)
= 1, n ≥ 2

where x, y , 0, x2+4y , 0 and generalized identities of these polynomials are obtained [4, 5]. Then, h(x)-
Fibonacci polynomials as another generalization of Fibonacci polynomials are defined by the recurrence
relation

fh,n (x) = h (x) fh,n−1 (x) + fh,n−2 (x) , fh,n (x) = 0, fh,1 (x) = 1, n ≥ 2

Corresponding author: YT mail address: ytasyurdu@erzincan.edu.tr ORCID: 0000-0002-9011-8269
Received: 4 October 2022; Accepted: 25 December 2022; Published: 30 December 2022
Keywords. Bi-periodic Fibonacci polynomials; Fibonacci polynomial, generalized Fibonacci polynomials
2010 Mathematics Subject Classification. 11B39
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where h(x) be a polynomial with real coefficients [6]. Further generalizations of Fibonacci polynomials
have been presented by many authors as Fermat, Chebyshev, Morgan-Voyce, Vieta polynomials. The
generating functions, exponential generating functions, the Binet-like formulas, sums formulas, matrix
representations and periods according to the m modulo of Fibonacci polynomial sequences are presented
[7–10].

Motivated by of the above-cited studies, it is introduced a new generalization of the Fibonacci numbers
and polynomials called generalized Fibonacci polynomials. For n ≥ 2, the generalized Fibonacci polynomial
sequences, {Fn (x)}n≥0 are defined by the recurrence relation

Fn (x) = d (x)Fn−1 (x) + 1 (x)Fn−2 (x) (1)

with initial terms F0 (x) = 0 and F1 (x) = 1 where d (x) and 1 (x) are fixed nonzero polynomials in Q [x]
[11]. Obviously, for d (x) = x and 1(x) = 1 we obtain classical Fibonacci polynomial and Fn (1) = fn where fn
is the nth classical Fibonacci number. Binet formulas for the generalized Fibonacci polynomial sequences
are given by

Fn (x) =
σn (x) − ρn (x)
σ(x) − ρ (x)

where σ(x) and ρ(x) are the roots of the quadratic equation t2
− d (x) t − 1 (x) = 0 of equation (1). The

readers can find more detailed information about the generalized Fibonacci polynomial in [12, 13].
In other generalizations of Fibonacci numbers and polynomials, nonzero real numbers are taken into

account, bi-periodic Fibonacci number sequences,
{
qn

}
are defined by

qn =

{
aqn−1 + qn−2, if n is even
bqn−1 + qn−2, if n is odd n ≥ 2

with initial terms q0 = 0, q1 = 1 [14] and bi-periodic Fibonacci polynomial sequences,
{
qn (x)

}
are defined

by

qn (x) =
{

aqn−1 (x) + qn−2 (x) , if n is even
bqn−1 (x) + qn−2 (x) , if n is odd n ≥ 2

with initial terms q0 (x) = 0, q1 (x) = 1 where a and b are any two nonzero real numbers. Also, some
identities related to these bi-periodic sequences are given, respectively [15].

The aim of this study is to define new generalizations of the Fibonaci and the Fibonacci type polynomials,
the bi-periodic Fibonacci and the bi-periodic Fibonacci type polynomials, which we shall call bi-periodic
generalized Fibonacci polynomials. It is to present generating functions, general formulas and well-known
identities for these polynomials. It is also to give special cases of the bi-periodic generalized Fibonacci
polynomials and generalize all the results.

2. Bi-Periodic Generalized Fibonacci Polynomials

In this section we define a new kind of generalized Fibonacci polynomials, called bi-periodic generalized
Fibonacci polynomials, which are Fibonacci polynomials, h(x)-Fibonacci polynomials, Fibonacci polynomi-
als with two variables, Pell polynomials, Jacobsthal polynomials, Fermat polynomials, Chebyshev second
kind polynomials, Morgan-Voyce first kind polynomials and Vieta polynomials. Generating functions, Bi-
net formulas, some basic properties as well as the Catalan’s identity, Cassini’s identity, d’Ocagne’s identity
for these polynomials are obtained.
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Definition 2.1. For any two nonzero real numbers a and b, the nth bi-periodic generalized Fibonacci polynomial is
defined by the recurrence relation

Fn (x) =
{

ad (x)Fn−1 (x) + 1 (x)Fn−2 (x) , if n is even
bd (x)Fn−1 (x) + 1 (x)Fn−2 (x) , if n is odd n ≥ 2 (2)

with initial terms F0(x) = 0, F1(x) = 1 for n ≥ 2, where d (x) and 1 (x) are fixed nonzero polynomials in Q [x].
The bi-periodic generalized Fibonacci polynomial sequences are denoted by {Fn (x)}nϵN.

The bi-periodic generalized Fibonacci polynomial sequences are as follows

{Fn (x)}nϵN =
{
0, 1, ad (x) , abd2 (x) + 1 (x) , a2bd3 (x) + 2ad (x) 1 (x) , a2b2d4 (x) + 3abd2 (x) 1 (x) + 12 (x) ,

a3b2d5 (x) + 4a2bd3 (x) 1 (x) + 3ad (x) 12 (x) , a3b3d6 (x) + 5a2b2d4 (x) 1 (x) + 6abd2 (x) 12 (x) + 13 (x) , ... }

Note that d (x) = x and 1 (x) = 1, we get the bi-periodic Fibonacci polynomial Fn (x) = Fn (x). Similar
special cases of the bi-periodic generalized Fibonacci polynomials are given in the Table 1

Table 1: Special cases of the polynomials Fn (x)
Bi-Periodic Generalized Fibonacci Polynomials Fn d (x) 1 (x)

Bi-periodic Fibonacci polynomials Fn(x) x 1
Bi-periodic h(x)-Fibonacci polynomials Fh,n(x) h(x) 1

Bi-periodic Fibonacci polynomials with two variables Fn
(
x, y

)
x y

Bi-periodic Pell polynomials Pn(x) 2x 1
Bi-periodic Jacobsthal polynomials Jn(x) 1 2x

Bi-periodic Fermat polynomials Φn(x) 3x −2
Bi-periodic Chebyshev second kind polynomials Un(x) 2x −1
Bi-periodic Morgan-Voyce first kind polynomials Bn(x) x + 2 −1

Bi-periodic Vieta polynomials Vn(x) x −1

Since the all results given throughout the study are provided for all the bi-periodic generalized Fibonacci
polynomials, the values given in Table 1 can be used in the relevant theorem or corollary for any bi-periodic
polynomials.

From Definition 2.1, alternative recurrence relations can be given for the bi-periodic generalized Fi-
bonacci polynomials where ξ (n) = n − 2

⌊
n
2

⌋
is the parity function, i.e.,

ξ (n) =
{

0, if n is even
1, if n is odd .

Let a and b be any two nonzero real numbers, nth bi-periodic generalized Fibonacci polynomial is given
by

Fn (x) = a1−ξ(n)bξ(n)d (x)Fn−1 (x) + 1 (x)Fn−2 (x) , n ≥ 2 (3)

with initial terms F0(x) = 0, F1(x) = 1 where d (x) and 1 (x) are fixed nonzero polynomials in Q [x].
The quadratic equation of the bi-periodic generalized Fibonacci polynomials is

t2
− d (x) abt − 1 (x) ab = 0

and their roots are γ (x) =
d(x)ab+

√
d2(x)a2b2+41(x)ab

2 and δ (x) =
d(x)ab−

√
d2(x)a2b2+41(x)ab

2 . In this case, the following
relations are obtained between the roots γ (x) and δ (x)
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γ (x) + δ (x) = d (x) ab

γ (x) − δ (x) =
√

d2 (x) a2b2 + 41 (x) ab

γ (x) δ (x) = −1 (x) ab

d (x)γ (x) + 1 (x) =
γ2 (x)

ab

d (x) δ (x) + 1 (x) =
δ2 (x)

ab
.

2.1. Generating Functions and Binet Formulas of Polynomials Fn(x)
In this section, we construct the generating functions of the bi-periodic generalized Fibonacci polynomial

the sequences, {Fn (x)}nϵN. Let the generating functions of these sequences be Gn (x, t) such that

Gn (x, t) =
∞∑

n=0

Fn (x) tn (4)

where Fn (x) is the nth bi-periodic generalized Fibonacci polynomial and d (x), 1 (x) are fixed nonzero
polynomials inQ [x]. First, the identities for the odd and even subscript terms of the bi-periodic generalized
Fibonacci polynomials are given in the following lemma used to derive these functions.

Lemma 2.2. The bi-periodic generalized Fibonacci polynomial sequences, {Fn (x)}nϵN satisfy the following identities

i. F2n (x) =
(
abd2 (x) + 21 (x)

)
F2n−2 (x) − 12 (x)F2n−4 (x)

ii. F2n+1 (x) =
(
abd2 (x) + 21 (x)

)
F2n−1 (x) − 12 (x)F2n−3 (x)

Proof. Using the equation (2)
i.

F2n (x) = ad (x)F2n−1 (x) + 1 (x)F2n−2 (x)
= ad (x)

(
bd (x)F2n−2 (x) + 1 (x)F2n−3 (x)

)
+ 1 (x)F2n−2 (x)

=
(
abd2 (x) + 1 (x)

)
F2n−2 (x) + ad (x) 1 (x)F2n−3 (x)

=
(
abd2 (x) + 1 (x)

)
F2n−2 (x) + 1 (x)F2n−2 (x) − 12 (x)F2n−4 (x)

=
(
abd2 (x) + 21 (x)

)
F2n−2 (x) − 12 (x)F2n−4 (x)

ii.

F2n+1 (x) = bd (x)F2n (x) + 1 (x)F2n−1 (x)
= bd (x)

(
ad (x)F2n−1 (x) + 1 (x)F2n−2 (x)

)
+ 1 (x)F2n−1 (x)

=
(
abd2 (x) + 1 (x)

)
F2n−1 (x) + bd (x) 1 (x)F2n−2 (x)

=
(
abd2 (x) + 1 (x)

)
F2n−1 (x) + 1 (x)F2n−1 (x) − 12 (x)F2n−3 (x)

=
(
abd2 (x) + 21 (x)

)
F2n−1 (x) − 12 (x)F2n−3 (x)

Thus, the proof is completed.
Using the Lemma 2.2, the generating functions of the sequences {Fn (x)}nϵN are given in the following

Theorem.
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Theorem 2.3. The generating functions for the bi-periodic generalized Fibonacci polynomial sequences are

Gn (x, t) =
t + ad (x) t2

− 1 (x) t3

1 −
(
abd2 (x) + 21 (x)

)
t2 + 12 (x) t4 .

Proof. Using equation 4, we get

Gn (x, t) =
∞∑

n=0

Fn (x) tn = F0 (x) + F1 (x) t + F2 (x) t2 + . . . + Fn (x) tn + . . .

Let generating functions Gn (x, t) be the sum of the odd subscript and even subscript terms separately.
Then

Gn (x, t) = Gç
n (x, t) + GT

n (x, t) (5)

where Gç
n (x, t) is the sum of the even subscript terms and GT

n (x, t) is the sum of the odd subscript terms.
Therefore,

Gç
n (x, t) =

∞∑
i=0

F2i (x) t2i = F0 (x) + F2 (x) t2 + F4 (x) t4 + . . . (6)

If both sides of equation (6) are multiplied by −
(
abd2 (x) + 21 (x)

)
t2 and 12 (x) t4, then we get

−

(
abd2 (x) + 21 (x)

)
t2Gç

n (x, t) = −abd2 (x) + 21 (x)
∞∑

i=0

F2i (x) t2i+2 (7)

and

12 (x) t4Gç
n (x, t) = 12 (x)

∞∑
i=0

F2i (x) t2i+4 (8)

If we add the equations (6), (7) and (8) side by side, we obtain

(
1 −

(
abd2 (x) + 21 (x)

)
t2 + 12 (x) t4

)
Gç

n (x, t) = F0 (x) + F2 (x) t2 +

∞∑
i=2

F2i (x) t2i

−

(
abd2 (x) + 21 (x)

) ∞∑
i=0

F2i (x) t2i+2 + 12 (x)
∞∑

i=0

F2i (x) t2i+4

= ad (x) t2 +

∞∑
i=2

F2i (x) t2i
−

(
abd2 (x) + 21 (x)

) ∞∑
i=2

F2i−2 (x) t2i

+ 12 (x)
∞∑

i=2

F2i−4 (x) t2i

= ad (x) t2 +

∞∑
i=2

(F2i (x) −
(
abd2 (x) + 21 (x)

)
F2i−2 (x) +12 (x)F2i−4 (x)

)
t2i.

Using Lemma 2.2, i., generating functions for even subscript terms in the bi-periodic generalized
Fibonacci polynomial sequences are obtained as

Gç
n (x, t) =

ad (x) t2

1 −
(
abd2 (x) + 21 (x)

)
t2 + 12 (x) t4 .
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Now let consider the sum of the odd subscript terms in the generating function. Therefore,

GT
n (x, t) =

∞∑
i=0

F2i+1 (x) t2i+1 = F1 (x) t + F3 (x) t3 + F5 (x) t5 + ... (9)

If both sides of equation (9) are multiplied by −
(
abd2 (x) + 21 (x)

)
t2 and 12 (x) t4, , then we get

−

(
abd2 (x) + 21 (x)

)
t2GT

n (x, t) = −
(
abd2 (x) + 21 (x)

) ∞∑
i=0

F2i+1 (x) t2i+3 (10)

and

12 (x) t4GT
n (x, t) = 12 (x)

∞∑
i=0

F2i+1 (x) t2i+5 (11)

If we add the equations (9), (10) and (11) side by side, we obtain

(
1 −

(
abd2 (x) + 21 (x)

)
t2 + 12 (x) t4

)
GT

n (x, t) = F1 (x) t + F3 (x) t3 +

∞∑
i=2

F2i+1 (x) t2i+1

−

(
abd2 (x) + 21 (x)

)
F1 (x) t3

−

(
abd2 (x) + 21 (x)

) ∞∑
i=1

F2i+1 (x) t2i+3

+ 12 (x)
∞∑

i=0

F2i+1 (x) t2i+5

= t +
(
abd2 (x) + 1 (x)

)
t3 +

∞∑
i=2

F2i+1 (x) t2i+1
−

(
abd2 (x) + 21 (x)

)
t3

−

(
abd2 (x) + 21 (x)

) ∞∑
i=2

F2i−1 (x) t2i+1 + 12 (x)
∞∑

i=2

F2i−3 (x) t2i+1

= t +
(
abd2 (x) + 1 (x)

)
t3
−

(
abd2 (x) + 21 (x)

)
t3

+

∞∑
i=2

(F2i+1 (x) −
(
abd2 (x) + 21 (x)

)
F2i−1 (x) +12 (x)F2i−3 (x)

)
t2i+1.

Using Lemma 2.2, ii., generating functions for even subscript terms in the bi-periodic generalized
Fibonacci polynomial sequences are obtained as

GT
n (x, t) =

t − 1 (x) t3

1 −
(
abd2 (x) + 21 (x)

)
t2 + 12 (x) t4

From equation (5), generating functions for the bi-periodic generalized Fibonacci polynomial sequences
are

Gn (x, t) =
t + ad (x) t2

− 1 (x) t3

1 −
(
abd2 (x) + 21 (x)

)
t2 + 12 (x) t4 .

Thus, the proof is completed.
Now we give Binet formulas that allow us to calculate the nth terms of sequences {Fn (x)}nϵN in the

following theorem.
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Theorem 2.4. The Binet formulas for the bi-periodic generalized Fibonacci polynomial sequences are given by

Fn (x) =

 a1−ξ(n)

(ab)⌊
n
2 ⌋

 γn (x) − δn (x)
γ (x) − δ (x)

where γ (x) =
d(x)ab+

√
d2(x)a2b2+41(x)ab

2 , δ (x) =
d(x)ab−

√
d2(x)a2b2+41(x)ab

2 and ξ (n) = n − 2
[

n
2

]
.

Proof. By induction method on n. The result is obviously valid for n = 0, 1. Suppose that result is true
for n ∈ N, we shall show that it is true for n + 1. Using equation (3) and the hypothesis of induction, we
have

Fn+1 (x) = a1−ξ(n+1)bξ(n+1)d (x)Fn (x) + 1 (x)Fn−1 (x)

= a1−ξ(n+1)bξ(n+1)d (x)

 a1−ξ(n)

(ab)⌊
n
2 ⌋

 γn (x) − δn (x)
γ (x) − δ (x)

 + 1 (x)

 a1−ξ(n−1)

(ab)⌊
n−1

2 ⌋

 γn−1 (x) − δn−1 (x)
γ (x) − δ (x)


=

a1−ξ(n+1)γn−1 (x)
γ (x) − δ (x)

a1−ξ(n)bξ(n+1)d (x)γ (x)

(ab)⌊
n
2 ⌋

+
a1−ξ(n−1)1 (x)

a1−ξ(n+1) (ab)⌊
n−1

2 ⌋


−

a1−ξ(n+1)δn−1 (x)
γ (x) − δ (x)

a1−ξ(n)bξ(n+1)d (x) δ (x)

(ab)⌊
n
2 ⌋

+
a1−ξ(n−1)1 (x)

a1−ξ(n+1) (ab)⌊
n−1

2 ⌋


=

a1−ξ(n+1)γn−1 (x)
γ (x) − δ (x)

 abd (x)γ (x)

aξ(n)b1−ξ(n+1) (ab)⌊
n
2 ⌋
+

ab1 (x)

(ab)⌊
n−1

2 ⌋+1


−

a1−ξ(n+1)δn−1 (x)
γ (x) − δ (x)

 abd (x) δ (x)

aξ(n)b1−ξ(n+1) (ab)⌊
n
2 ⌋
+

ab1 (x)

(ab)⌊
n−1

2 ⌋+1


=

a1−ξ(n+1)γn−1 (x)
γ (x) − δ (x)

ab(d (x)γ (x) + 1 (x))

(ab)⌊
n+1

2 ⌋

 − a1−ξ(n+1)δn−1 (x)
γ (x) − δ (x)

ab(d (x) δ (x) + 1 (x))

(ab)⌊
n+1

2 ⌋


=

a1−ξ(n+1)γn−1 (x)
γ (x) − δ (x)

 γ2 (x)

(ab)⌊
n+1

2 ⌋

 − a1−ξ(n+1)δn−1 (x)
γ (x) − δ (x)

 δ2 (x)

(ab)⌊
n+1

2 ⌋


=

 a1−ξ(n+1)

(ab)⌊
n+1

2 ⌋

 γn+1 (x) − δn+1 (x)
γ (x) − δ (x)

where d (x)γ (x) + 1 (x) = γ
2(x)
ab , d (x) δ (x) + 1 (x) = δ

2(x)
ab and ξ (n) +

⌊
n
2

⌋
=

⌊
n+1

2

⌋
, 1 − ξ (n + 1) +

⌊
n
2

⌋
=

⌊
n+1

2

⌋
.

This completes the proof.

2.2. Identities for Polynomials Fn (x)
In this section, we give various identities for consecutive terms and negative subscript terms of the bi-

periodic generalized Fibonacci polynomial sequences and present the Catalan’s identity, Cassini’s identity,
d’Ocagne’s identity for these polynomials.

Theorem 2.5. The limit of the ratio of consecutive terms of the bi-periodic generalized Fibonacci polynomial sequences
is

i. limn→∞
F2n+1 (x)
F2n (x)

=
γ (x)

a

ii. limn→∞
F2n(x)
F2n−1(x)

=
γ (x)

b
where Fn (x) is the nth bi-periodic generalized Fibonacci polynomial.
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Proof. Using Binet formula for nth bi-periodic generalized Fibonacci polynomial given in Theorem 2.4,
we have

i.

limn→∞
F2n+1 (x)
F2n (x)

= limn→∞

(
a1−ξ(2n+1)

(ab)⌊
2n+1

2 ⌋

) (
γ2n+1(x)−δ2n+1(x)
γ(x)−δ(x)

)
(

a1−ξ(2n)

(ab)⌊
2n
2 ⌋

) (
γ2n(x)−δ2n(x)
γ(x)−δ(x)

)

= limn→∞

1
(ab)n

(
γ2n+1(x)−δ2n+1(x)
γ(x)−δ(x)

)
a

(ab)n

(
γ2n(x)−δ2n(x)
γ(x)−δ(x)

)
= limn→∞

1
a

γ2n+1 (x)
(
1 −

(
δ(x)
γ(x)

)2n+1
)

γ2n (x)
(
1 −

(
δ(x)
γ(x)

)2n
)

=
γ (x)

a
ii.

limn→∞
F2n(x)
F2n−1(x)

= limn→∞

(
a1−ξ(2n)

(ab)⌊
2n
2 ⌋

) (
γ2n(x)−δ2n(x)
γ(x)−δ(x)

)
(

a1−ξ(2n−1)

(ab)⌊
2n−1

2 ⌋

) (
γ2n−1(x)−δ2n−1(x)
γ(x)−δ(x)

)

= limn→∞

a
(ab)n

(
γ2n(x)−δ2n(x)
γ(x)−δ(x)

)
1

(ab)n−1

(
γ2n−1(x)−δ2n−1(x)
γ(x)−δ(x)

)
= limn→∞

a
ab

γ2n (x)
(
1 −

(
δ(x)
γ(x)

)2n
)

γ2n−1 (x)
(
1 −

(
δ(x)
γ(x)

)2n−1
)

=
γ (x)

b

where |δ (x)| < γ (x) and limn→∞

(
δ(x)
γ(x)

)n
= 0. This completes the proof.

Theorem 2.6. Negative subscript terms of the bi-periodic generalized Fibonacci polynomial sequences are obtained
as

F−n (x) = (−1)n+1 (
1 (x)

)−n Fn (x) .

Proof. Using Binet formula for nth bi-periodic generalized Fibonacci polynomial given in Theorem 2.4,
we have

F−n (x) =

 a1−ξ(−n)

(ab)⌊
−n
2 ⌋

 γ−n (x) − δ−n (x)
γ (x) − δ (x)

= (−1)

 a1−ξ(−n)

(ab)⌊
−n
2 ⌋

 γn (x) − δn (x)(
−1 (x) ab

)n (
γ (x) − δ (x)

)
= (−1)

(
−1 (x)

)−n

 a1−ξ(n)

(ab)⌊
n
2 ⌋

 γn (x) − δn (x)
γ (x) − δ (x)

= (−1)n+1 (
1 (x)

)−n Fn (x)
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where γ (x) δ (x) = −1 (x) ab. Thus, the proof is completed.
Now we present some basic identities for the bi-periodic generalized Fibonacci polynomials, such as

Catalan’s identity, Cassini’s identity and d’Ocagne’s identity.

Theorem 2.7. (Catalan’s Identity) Let n and r be nonnegative integers. For n ≥ r, we have

aξ(n−r)b1−ξ(n−r)Fn−r (x)Fn+r (x) − aξ(n)b1−ξ(n)Fn
2 (x) = −

(
−1 (x)

)n−r aξ(r)b1−ξ(r)Fr
2 (x)

where Fn (x) is the nth bi-periodic generalized Fibonacci polynomial.

Proof. Using Binet formula for nth bi-periodic generalized Fibonacci polynomial given in Theorem 2.4,
we have

aξ(n−r)b1−ξ(n−r)Fn−r (x)Fn+r (x) − aξ(n)b1−ξ(n)Fn
2 (x)

= aξ(n−r)b1−ξ(n−r)

 a1−ξ(n−r)

(ab)⌊
n−r

2 ⌋

  a1−ξ(n+r)

(ab)⌊
n+r

2 ⌋

 (γn−r (x) − δn−r (x)
γ (x) − δ (x)

) (
γn+r (x) − δn+r (x)
γ (x) − δ (x)

)
− aξ(n)b1−ξ(n)

 a1−ξ(n)

(ab)⌊
n
2 ⌋

  a1−ξ(n)

(ab)⌊
n
2 ⌋

 (γn (x) − δn (x)
γ (x) − δ (x)

) (
γn (x) − δn (x)
γ (x) − δ (x)

)
=

a2−ξ(n−r)b1−ξ(n−r)

(ab)⌊
n−r

2 ⌋+⌊
n+r

2 ⌋

γ2n (x) − γn−r (x) δn+r (x) − δn−r (x)γn+r (x) + δ2n (x)(
γ (x) − δ (x)

)2


−

a2−ξ(n)b1−ξ(n)

(ab)2⌊ n
2 ⌋

γ2n (x) − 2γn (x) δn (x) + δ2n (x)(
γ (x) − δ (x)

)2


=

a2−ξ(n−r)b1−ξ(n−r)

(ab)n−ξ(n−r)

γ2n (x) −
(
γ (x) δ (x)

)n−r
(
γ2r (x) + δ2r (x)

)
+ δ2n (x)(

γ (x) − δ (x)
)2


−

a2−ξ(n)b1−ξ(n)

(ab)n−ξ(n)

γ2n (x) − 2
(
γ (x) δ (x)

)n + δ2n (x)(
γ (x) − δ (x)

)2


=

a
(ab)n−1

−
(
γ (x) δ (x)

)n−r
(
γ2r (x) + δ2r (x)

)
+ 2

(
γ (x) δ (x)

)n(
γ (x) − δ (x)

)2


=
−a

(
γ (x) δ (x)

)n−r

(ab)n−1

(
γr (x) − δr (x)
γ (x) − δ (x)

)2

=
−a

(
−1 (x) ab

)n−r

(ab)n−1

(ab)2⌊ r
2 ⌋

a2−2ξ(r)
Fr

2 (x)

= −
(
−1 (x)

)n−r a (ab)2⌊ r
2 ⌋

(ab)ξ(r)+2⌊ r
2 ⌋−1 a2−2ξ(r)

Fr
2 (x)

= −
(
−1 (x)

)n−r aξ(r)b1−ξ(r)Fr
2 (x)

where ξ (n) = n − 2
⌊

n
2

⌋
and

⌊
n−r

2

⌋
+

⌊
n+r

2

⌋
= n − ξ (n − r). This completes the proof.

Theorem 2.8. (Cassini’s Identity) Let n be nonnegative integer. Then, we have(a
b

)ξ(n−1)
Fn−1 (x)Fn+1 (x) −

(a
b

)ξ(n)
Fn

2 (x) = −
(
−1 (x)

)n−1 a
b

Proof. The proof can be seen in an obvious way by taking r = 1 in the Catalan’s identity.
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Theorem 2.9. (d’Ocagne’s Identity) Let n and r be nonnegative integers. For n ≥ r, we have

aξ(nr+n)bξ(nr+r)Fn (x)Fr+1 (x) − aξ(nr+r)bξ(nr+n)Fn+1 (x)Fr (x) =
(
−1 (x)

)r aξ(n−r)Fn−r (x)

where Fn (x) is the nth bi-periodic generalized Fibonacci polynomial.

Proof. Using Binet formula for nth bi-periodic generalized Fibonacci polynomial given in Theorem 2.4,
we have

aξ(nr+n)bξ(nr+r)Fn (x)Fr+1 (x) − aξ(nr+r)bξ(nr+n)Fn+1 (x)Fr (x)

= aξ(nr+n)bξ(nr+r)

 a1−ξ(n)

(ab)⌊
n
2 ⌋

  a1−ξ(r+1)

(ab)⌊
r+1

2 ⌋

 (γn (x) − δn (x)
γ (x) − δ (x)

) (
γr+1 (x) − δr+1 (x)
γ (x) − δ (x)

)
− aξ(nr+r)bξ(nr+n)

 a1−ξ(n+1)

(ab)⌊
n+1

2 ⌋

  a1−ξ(r)

(ab)⌊
r
2 ⌋

 (γn+1 (x) − δn+1 (x)
γ (x) − δ (x)

) (
γr (x) − δr (x)
γ (x) − δ (x)

)
=

abξ(nr+r)a1−ξ(n)−ξ(r+1)+ξ(nr+n)

(ab)⌊
n
2 ⌋+⌊

r+1
2 ⌋

 γn+r+1 (x) − γn (x) δr+1 (x) − δn (x)γr+1 (x) + δn+r+1 (x)(
γ (x) − δ (x)

)2


−

abξ(nr+n)a1−ξ(n+1)−ξ(r)+ξ(nr+r)

(ab)⌊
n+1

2 ⌋+⌊
r
2 ⌋

γn+r+1 (x) − γn+1 (x) δr (x) − δn+1 (x)γr (x) + δn+r+1 (x)(
γ (x) − δ (x)

)2


=

abξ(nr+r)aξ(n−r)−ξ(nr+n)

(ab)
n−r−ξ(n−r)

2 +ξ(nr+r)+r

γn+r+1 (x) + δn+r+1 (x) −
(
γ (x) δ (x)

)r
(
γ (x) δn−r (x) + δ (x)γn−r (x)

)
(
γ (x) − δ (x)

)2


−

abξ(nr+n)aξ(n−r)−ξ(nr+r)

(ab)
n−r−ξ(n−r)

2 +ξ(nr+n)+r

γn+r+1 (x) + δn+r+1 (x) −
(
γ (x) δ (x)

)r
(
γn−r+1 (x) + δn−r+1 (x)

)
(
γ (x) − δ (x)

)2


=

abξ(nr+r)aξ(nr+r)

(ab)
n−r−ξ(n−r)

2 +ξ(nr+r)+r

γn+r+1 (x) + δn+r+1 (x) −
(
γ (x) δ (x)

)r
(
γ (x) δn−r (x) + δ (x)γn−r (x)

)
(
γ (x) − δ (x)

)2


−

abξ(nr+n)aξ(nr+n)

(ab)
n−r−ξ(n−r)

2 +ξ(nr+n)+r

γn+r+1 (x) + δn+r+1 (x) −
(
γ (x) δ (x)

)r
(
γn−r+1 (x) + δn−r+1 (x)

)
(
γ (x) − δ (x)

)2


=

a (ab)−r

(ab)
n−r−ξ(n−r)

2


(
γ (x) δ (x)

)r
(
−γ (x) δn−r (x) − δ (x)γn−r (x) + γn−r+1 (x) + δn−r+1 (x)

)
(
γ (x) − δ (x)

)2


=

a (ab)−r

(ab)⌊
n−r

2 ⌋

 (−1 (x) ab
)r (γ (x) − δ (x)

) (
γn−r (x) − δn−r (x)

)(
γ (x) − δ (x)

)2


=

a
(
−1 (x)

)r

(ab)⌊
n−r

2 ⌋

(
γn−r (x) − δn−r (x)
γ (x) − δ (x)

)
=

(
−1 (x)

)r aξ(n−r)Fn−r (x)

where

ξ (n) + ξ (r + 1) − 2ξ (nr + n) = ξ (n + 1) + ξ (r) − 2ξ (nr + r) = 1 − ξ (n − r)

ξ (n − r) = ξ (nr + n) + ξ (nr + r)
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n − r − ξ (n − r)
2

+ ξ (nr + r) + r =
⌊n

2

⌋
+

⌊ r + 1
2

⌋
n − r − ξ (n − r)

2
+ ξ (nr + n) + r =

⌊n + 1
2

⌋
+

⌊ r
2

⌋
n − r − ξ (n − r)

2
=

⌊n − r
2

⌋
.

This completes the proof.

3. Conclusion and Suggestion

The most interesting applications of the Fibonacci numbers have been on its generalizations, also called
families of Fibonacci numbers. Large classes of polynomials are emerged as the well-known generalization
of Fibonacci numbers. In this paper, the bi-periodic generalized Fibonacci polynomials, which generalize
well-known Fibonacci polynomials, the h(x)-Fibonacci polynomials, the Fibonacci polynomials with two
variable, the Pell polynomials, the Jacobsthal polynomials, the Fermat polynomials, the Chebyshev second
kind polynomials, the Morgan-Voyce first kind polynomials, the Vieta polynomials, are defined. Also the
bi-periodic Fibonacci polynomials, the bi-periodic h(x)-Fibonacci polynomials, the bi-periodic Fibonacci
polynomials with two variable, the bi-periodic Pell polynomials, the bi-periodic Jacobsthal polynomials,
the bi-periodic Fermat polynomials, the bi-periodic Chebyshev second kind polynomials, the bi-periodic
Morgan-Voyce first kind polynomials, the bi-periodic Vieta polynomials are presented. Binet formulas that
allow us to calculate the nth term of these polynomial sequences and some properties of their consecutive
terms are given. Also generating functions, Catalan’s identity, Cassini’s identity, and d’Ocagne’s identity
are obtained.

It would be interesting to study these polynomials in matrix theory. More general formulas that allow
us to calculate the nth terms of these polynomial sequences and sums formulas can be explored.
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