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The Complex-type Cyclic-Pell Sequence and its Applications
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Abstract. In this paper, we define the complex-type cyclic-Pell sequence and then, we give miscellaneous
properties of this sequence by using matrix method. Also, we study the complex-type cyclic-Pell sequence
modulo m. In addition, we describe the complex-type cyclic-Pell sequence in a 2-generator group and we
investigate that in finite groups in detail. Finally, we obtain the lengths of the periods of the complex-type
cyclic-Pell sequences in dihedral groups D,, D3, D4, Ds, Dg, D1 and D3, with respect to the generating pair

(x,y).

1. Introduction

The well-known the Pell sequence {P,} is defined by the following recurrence relation:
P, =2Py 1+ Py

for n > 2 and with initial conditions Po = 0 and P; = 1.
The complex Fibonacci sequence {F}} is defined [21] by the following equation: for n > 0

F,=F, +iFpn

where i = V-1 is the imaginary unit and F, is the n" Fibonacci number (cf. [5, 22]).
k-1
Suppose that {Cf}j o (k > 2) is a sequence of real numbers such that ¢;_; # 0. The k-generalized Fibonacci

sequence {a,}, % is defined as
An+k = Ck-1An+k-1 F Ck-20n+k-2 + + - + Colly

for n > 0 and where ag, a1, . .., ax_1 are specified by the initial conditions.
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In [23], Kalman gave a number of closed-form formulas for the generalized sequence using the com-
panion matrix as follows:

[0 1 0 --- 0 0
o o 1 -~ 0 0
o o0 o --- 0 0
A = )
0 0 O 0 1
| C0 €1 €2+ Ck—2  Ck-1 |
Also, he proved that
ap ay
. a1 An+1
(Ax) =
(] Antk-1

In the literature, many interesting properties and applications of the recurrence sequences relevant to
this paper have been studied by many authors; see for example, [3, 7-9, 14, 15, 28, 29]. Especially, in [18]
and [17], the authors defined the new sequences using the quaternions and complex numbers and then
they gave miscellaneous properties and many applications of the sequences defined. In the first part of this
paper, we define the complex-type cyclic-Pell sequence and then, we give miscellaneous properties of this
sequence by the aid of the matrix method.

We recall that when a sequence is composed only of repetitions of a fixed subsequence A sequence
is periodic if after a certain points it consists only of repetitions of a fixed subsequence. We refer to the
number of members in the shortest repeating subsequence as the period of the sequence. For instance, when
a sequence with the terms x, y,z,t,y,2,t,y,2,t,... is considered, one would say it is periodic after the initial
term k and it has period 3. Also, the first 7 terms in a sequence form a repeating subsequence, then it is said to
be simply periodic with period r. For instance, when a sequence with the terms x, y,z,t,x,y,z,t,x, y,2,t,...
is considered, one would say it is simply periodic with period 4.

The study of the linear recurrence sequences modulo m began with the earlier work of Wall [30] where
the periods of the ordinary Fibonacci sequences modulo m were investigated. Recently, the theory extended
to some special linear recurrence sequences by several authors; see for example, [20, 26].

For a finitely generated group G = (A), where A = {ay, a5, ...,4, }, the sequence x, = 4,41, 0 <u <n-1,

n

Xpsu = | Xusv—1, 4 = 0 is called the Fibonacci orbit of G with respect to the generating set A, denoted as

v=1
FA(G)in [11].
A k-nacci (k-step Fibonacci) sequence in a finite group is a sequence of group elements xg, x1, X2, . .., Xz,
... for which, given an initial (seed) set xo, x1, x2, ..., xj-1, each element is defined by

X0X1 *** Xp_1 for j<n <k,
Xy = P
Xp—kXn—k+1 *** Xn_1 form > k.

We also require that the initial elements of the sequence xo, x1, x2, . . ., Xj_1 generate the group, thus forcing
the k-nacci sequence to reflect the structure of the group. The k-nacci sequence of a group G generated by

Xo, X1, X2, . .., Xj-1 is denoted by Fy (G; Xo,X1,%X2, ... ,xj_l) in [25].
Note also that the orbit of a k-generated group is a k-nacci sequence.
From [17], we use the following definition as our preliminary information.

Definition 1.1. Let G be a k-generated group. For a generating k-tuple (x1,xa, . .., xx) , the complex-type k-Finonacci
orbit is defined by a; = xj41, (0 <i<k-1),

M 1 .
Ak = @) (@ns1)" .. (@pix—1)', 120
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where the following conditions are achieved for any x, y € G and any integer u:

(i). Let e be the identity of G and consider z = a + ib, where a, b are integers, then

+x% = xu(mod [x])+ib(mod |x]) — xu(mod \xl)xib(mod [xl) — xib(mod |x|)xu(m0d [xl) — xib(mod |x])+a(mod |x|),

£ xil = (xi)ﬂ — (xa)i,

xe = ¢,

% x0+0 — o

(ii). Given z1 = ay + iby and zy = ay + iby, where a1, by, a, and by are integers, y~2x™% = (x* yZZ)_l.

(iii). If yx # xy, then y'x' # x'y'.

P : .o\1

(). y'x' = (xy) and x 'y~ = (xlyl) ,

(). y'x = xy' and so x'y~! = (xyi)l and x'y' = (xiy)l.

The study of the recurrence sequences in groups began with the earlier work of Wall [30]. In the
mid-eighties, Wilcox studied the Fibonacci sequences in abelian groups in [31]. In [12], the theory was
expanded to some finite simple groups by Campbell et al.. There, they defined the Fibonacci length of
the Fibonacci orbit and the basic Fibonacci length of the basic Fibonacci orbit in a 2-generator group. The
concept of Fibonacci length for more than two generators has also been considered; see, for example,
[10, 11]. In [25], Knox signified that a k-nacci (k-step Fibonacci) sequence in a finite group is periodic.
Recently, the theory has been extended to some special linear recurrence sequences by several authors; see
for example, [1, 2, 4, 13, 16, 19, 24, 27]. Deveci and Shannon [17] defined the complex-type k-Fibonacci
orbit of a k-generator group. They proved that the complex-type k-Fibonacci orbit of a k-generator group
is periodic if the group is finite. In the second part of this paper, we redefine the complex-type cyclic-Pell
sequence by means of the elements of 2-generator groups which is called the complex-type cyclic-Pell orbit.
Then we examine the sequence in finite groups in detail. Finally, we obtain the lengths of the periods of
the complex-type cyclic-Pell orbits of the dihedral group D, for some n > 2 as applications of the results
obtained.

2. The Complex-type Cyclic-Pell Sequence

Now we define the complex-type cyclic-Pell sequence by the following homogeneous linear recurrence
relation forn > 1 4 ,
20 +p? = 0(mod 4)

(i) i(ZPffﬁ + Pff’i?) n =1(mod 4)
n+2 _Zpilcﬁ _ pglc,l) n=2 (mod 4)

—i (ZPSQ + pgf ’i)) n = 3(mod 4)

where p'“) = 0,p” = 1and i = V-1.
Letting

1)

and by using an induction method on n, we find the relationship between the elements of the sequence

13  —6-2i ]

{p,(f'i)} and the matrix M as follows:

p(C,i) p(f,i)
(M)” = 4(111,4)—2 ) 4n+1 )
Pins1 Re (pfnz ) —Im <p4cnz+1) )

In [6], Bicknell defined the generating matrix of the Pell numbers, P-matrix as follows:
2 1
Ve 1o

Using the matrices M and N, we have the following useful result.
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Proposition 2.1. Forn >0
det(M)" = (=1)" - det (N)*"

Proof. It is well-known that the nth powers of the matrix N is as follows:

Pn+1 Pn ] (2)

(N)n:[ Pn Pn—l

for n > 0. Since det M = det (N)* and from the (1) and (2), we have conclusion. [

We use the above definitions and define the matrices:
!
B, = [ —12 —01 ] ,
me| 77

2 1
e[

Let M = B4B3B,B;. Using the above identities, we define the folloving matrix:

and

E" = B,By_1...BiM*

where n = 4k + u such that u, k € N. So we get

1 (C i)
E[o] [?cz%] 6)
for n = 4k + u such that u, k € IN.
Now we investigate the Simpson formulas of the complex-type cyclic-Pell sequence.
If n =4k + 1 (k € IN), then

(c,i) (c,i)

= BMF = [
n+1 p"

i el [ ]

So we get
(Pfff)z) (p;co) (pffg)(—ZRe (p(cl)) +i [Re( (cz)) + Imp') ) = (=1 i

If n = 4k + 2 (k € IN), then

n+1

(c,i) (c,i)
n _ k — pn
E" = BoBiM" = [ +2 R (p(C 1)) ‘i [Rez G 1)) +Im (P(c,i))] }

So we get

(Pe5) (~2Re () + i+ [Re () +1m (pi8)]) = () () = -0 4
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If n = 4k + 3 (k € N), then

(c,i) i)
E" = ByBByM* = [ Pz Relp) -1
(c,i) (c,i)
pn+l P

m (p;”) l

So we get L
(P2) () ~ () [Re () = 1m )] = (-1

If n = 4k + 4 (k € N), then

: . [ p(c ) p(c,n l
E'=M = n+2 I+l .
P Re(pl?”)=Im(p))

So we get

(2 [Re 7)1 12)] - () 55 = .

3. The Complex-type Cyclic-Pell Sequence in Groups

If we reduce the sequence {p,(f Z)} modulo m, taking least nonnegative residues, then we get the following

recurrence sequence:

e e} = {p om), p50 m), L P (),

where pi.c’i) (m) is used to mean the nth element of the complex-type cyclic-Pell sequence when read modulo

m. We note here that the recurrence relations in the sequences {pg,c’i) (m)} and {pﬁf Z)} are the same.

Theorem 3.1. The sequence \p { e (m)} is periodic and the length of its period is divisible by 4.
Proof. Consider the set

R = {(z1,22) | z’s are complex numbers a; + ib, where
a and by are integers such that 0 < ai, by <m —1and k € {1,2}}.

Let |R| be the cardinality of the set R. Since the set R is finite, there are |R| distinct 2-tuples of the complex-
type cyclic-Pell sequence modulo m. Thus, it is clear that at least one of these 2-tuples appears twice in
(c,i

the sequence {p { (ci) (m)} Let p(c D (m) = (C' (m) and p(c D (m) = Pv+) (m). If v —u = 0(mod 4), then we get

u+1l

pg‘é (m) = piﬂr’; (m), p(c D (m) = vﬂf’; (m), .... So, it is easy to see that the subsequence following this 2-tuple

u+3

repeats; that is, {p(c g (m)} is a periodic sequence and the length of its period must be divided by 4. O

We denote the lengths of periods of the sequence {p,(f’i) (m)} by hp@,,') (m). Itis easy to see from the equation
(3), hp(c,i) (m) is the smallest positive integer a such that E* = I (mod m).

Given an integer matrix A = [a,-j], A (mod m) means that all entries of A are modulo m, that is,
A (mod m) = (aij (mod m)). Let us consider the set (A),, = {(A)" (mod m) | n > 0}. If (det A, m) = 1, then the

set (A),, is a cyclic group; if (det A, m) # 1, then the set (A),, is a semigroup. Since det M = -1, the set (M),,
is a cyclic group for every positive integer m > 2. From (3), it is easy to see that hp«,n (m) = 2 (M)l

Theorem 3.2. Let ¢ be a prime. If s is the smallest positive integer such that (M) | # (M), then (M) | =
£ [(M) .
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Proof. Suppose that a is a positive integer and [(M),,| is denoted by lp(m (m). Let I be 2 X2 identity matrix and

A a+1 ) a+1
(M)ll’ff”) () =] (mode““). Then we can derive (M)lpﬁf'l) () = [ (mode&®), which means that lp(c,i) (&%) divides

i€ . . .
lp(c,i) (e““). Moreover, we may write (M) PL')(E - I+ (ml(.‘;) . es), by the binomial theorem. Hence, we obtain:
&
Lien(e)e _ (@ € _ Z V[, (@) "_ +1
(V) = (I + (mi,j ’ ga)) - (i)<mz’,j ' 5“) = I(mOdfa )
n=0

Then we have (1\/1)1"("”)(#).S =1 (m0d€a+l)r which implies that [ ¢, (Saﬂ) divides [ ¢ (¢°) - €. According to

these results, it is seen that I (e“”) =L (&%) or Leo (e““) =L (¢%) - ¢, and the latter holds if and only if
there is a mfa]) which is not divisible by ¢. Due to fact that we assume s is the smallest positive integer such
that lp«,n (85+1) # me (&%), there is an ml(t]) which is not divisible by ¢. This shows that lp(c,a (85”) = lp<c,[) (%) - e.

’

So we have the conclusion. [

Theorem 3.3. Let my and my be positive integers with my, my > 2, then )<M>lcm[m1,mz]' =lcm D(M}m1 , (M)mZ”.

Proof. Let [{(M),,| is denoted by lp@,,-) (m) and let lem [my,my] = m. Clearly, (M)lf’(n['i)(ml) = [ (modm;) and
(M)lf’(nc’i) ) = [ (modm,). Using the least common multiple operation this implies that(M)lﬂ(nf’” o) = I (modmy)

and (M)lpg’l)(M) = I (modmy). Sowe gEt|<M>m1| | KM),,| and |<M>mZ| | KM),,|, which means thatlem [|<M>m1 ’ <M>m2”

and M? = I (modm,), which yields that M = I (modm). Thus, it is seen thatlcm [|(M>m1
by |<M>lcm[m1,m2]|' So we have the conclusion. [

<M>m2” = p. Then we can write M = I (modm;)
(M),,|]is divisible

divides |<M>lcm[m1,mz]|' Now we consider as Ilem [|(M>m1

7

Let G be a finite j-generator group and let X be the subset of G X G X - - - X G such that (xl,xz, ... ,xj) eX
| ———

j times

if and only if G is generated by x1, x2, ..., x;. (xl, X2, ..., xj) is said to be a generating j-tuple for G.

Definition 3.4. Let G be a 2-generator group and let (x1,x2) be a generating 2-tuple of G. Then, we define the
complex-type cyclic-Pell orbit by

(Cn2) (Cn1)? for n = 0 (mod4)
(cn_z)i (cn_1)2i forn =1 (mod4)
(en-2)"" (ea-) 2 for n =2 (mod4)
(c,,_z)_i (cn_l)_2i for n = 3 (mod4)

C1=2X1, C2 =X,Cp = , (n>2).

Let the notation PEif?Xz) (G) denote the complex-type cyclic-Pell orbit of G for generating 2-tuple (x1, x7).

Theorem 3.5. If G is finite, then the complex-type cyclic-Pell orbit of G is a periodic sequence and the length of its
period is divisible by 4.

Proof. Consider the set
W = {((wl)ul(mod|w1|)+ib1(mod|wl\) (wz)az(mod|w2|)+1'b2(mod|wz\) .
i=N-1,w,uw, €G and ﬂl,az,bl,bz S Z} .

Since the group G is finite, W is a finite set. Then for any u > 0, there exists v > u such that ¢, = ¢, and
Cu+1 = Cp41. If v —u = 0(mod4), then we get c,42 = Cp42, Cut3 = Cp43, - ... Because of the repeating, for all

generating pairs, the sequence P(i’f,)xz) (G) is periodic and the length of its period must be divided by 4. [
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We denote the length of the period of the orbit P(i’c) (G) by LP® (G). From the definition of the

(x1,%2)
orbit P(l C) ) itis clear that the length of the period of thls sequence in a finite group depends on the chosen
generatmg set and the order in which the assignments of x;, x, are made.

We will now address the lengths of the periods of the orbits P((l:)y) (Dy), P((':)y) (D3), P((ZC)y) (Dy), P((zc)y) (Dg),

P((i’:)y) (Dg), P((i’:;) (D16) and P((i’:)y) (D3,). The dihedral group D, of order 2n is defined as follows:

w =y 2=y = () =

for every n > 2. Note that |x| = n, [y| = 2, xy = yx~! and yx = x~'y. By direct calculation, we obtain the orbit
P9 (D,) as follows:
(xy)
_ _ i
C1 - x/CZ—]//CS—x/
_ 20 _ .3
€4 = XY cs5=x c6—x y,
o = x4_31, Cg = 14+81y Co = = 13- 41
_ -12 _ JA+130 4 261
Cio = X Y, C11=X ,C12 = Y,
_ —39-4i § 7434 57239
iz = X ,C14 = Y, C15 ’
218+112i 5 185-72i —152-32i
Cle = X Yy, C17 ,C18 = Yy,
_ ,136+185i 5120-338i §491-136i
Cl9y = X , €20 = Y, 21 ’
_ . 1102-610i 5 1356-491i _ ..3814+1592i
Cpn = X Y, Cs ,C =X Y,
_ ..2693-1356i _ —1572-1120i _ .3596+2693i
G = X €6 =X Y, 07 =X ’
_ 5620-4266i _ .,—5839-3596i _ ,17298-11458i
Cg = X Y,C9 =X ;€30 =X Y,
_ .26512-5839i _ ,70322+23136i A0433-26512i
i1 = X ,C3 =X Y,C33 ’
_ —10544-29888i _ .86288+40433i — 1(162032-50978i
Cyg = X Y,C =X ,C36 = Y,
—61523-86288i 285078-223554i 333396~ 615231
Cyy = X ,C38 = X y C39
_ .1351870+346600i _ .631677-533396i _ 88516—7201921
Cyp = X Y,y =X ,Cpp =X Y,
_  .1973780+631677i _ .4036076-543162i _ —454647-1973780i
C43 = X ,Cag =X Y, 045 =X ’
_ .4945370-4490722i _ 10955224—454647i _ ,.26855818+5400016i
C46 = X Y, C7 =X ,Ca8 =X Y,
10345385—-10955224i 6165048—16510432i 43976088+10345385i
C9 = X ,C50 = X Y, 051 =X ’
_ ,94117224-4180338i _ .1984709-43976088i _ ,90147806-92132514i
Csp = X Y,C53 =X ,C54 =X Y,
_ .228241116+1984709i _ .546630038+88163096i 5178310901~ 2282411]61
s = X ,C56 = X Y, C57
_ ,.190008236—368319136i 1 964879388+178310901 _ 2119767012+11697334i
Csg = X ]/ Cs9 ,C60 = X ]/,
_ ,.201705569-964879388i _ ..1716355874—1918061442i 4801002272+2017055691
Ce1 = X 7C62 =X Y, Ce3
_ . 11318360418+1514650304i _ ..3231006177-4801002272i _ 4856348064—80873542401’
Cea = X Y,C65 =X 7 Ce6 = X Y,
_ ,.20975710752+3231006177i — 146807769568+1625341886i 6481689949~ 20975710752;
Ce7 = X , C68 = Y, Ce9
_ ..33844389670-40326079618i 5 101627869988-+6481689949i _ 237100129646+27362699720i
o = X v, cn ,C72 =X Y,
_  .61207089389-101627869988i _ .114685950868—175893040256i 453413950500+612070893891
c7z3 = X 1 C74 =X Y, C7s
_  ,1021513851868+53478861478i 5 168164812345-453413950500i _ 685184227178—8533490395221
C7e = X Y, C77 ,C78 =X Y,
_ .2160112029544+168164812345i — 1(5005408286266-+517019414832i _.1202203642009-2160112029544i
9 = X ,C80 = Y, C81 =X ’
_ ..2601001002248—3803204644256i 5 9766521318056+1202203642009i _ ..22134043638360+1398797360238i
Cgr = X Y, C83 ,C084 = X Y,
_  ..3999798362485-9766521318056i _ .14134446913390-18134245275874i 46035011869804+3999798362485
Cgs = X ,C86 = X Y, Cg7
_ . 106204470652998+10134648550904i §24269095464293-46035011869804i _ 57666279724412—819353751887041'
Cgg = X Y, Cs9 ;€90 =X Y,
_ ..209905762247212+24269095464293i _ . A77477804218836+33397184260118i _ .91063463984529-209905762247212i
Cgp = X ;€ =X Y,C3 =X ’
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— 295350876249778—-386414340234306i _ 1982734442715824+91063463984529i _ +2260819761681426+204287412265248i
Cyy = X Y,Co5 =X ;€96 =X Y,
— 499638288515025—982734442715824i _ ~-1261543184651376—1761181473166400i _ ~4505097389048624+499638288515025i
Cy7 = X ,Cog = X Y,C9 =X ’
— 10271737962748624+761904896136350¢ _ .2023448080787725-4505097389048624i _ A6224841801173174—8248289881960898i
Cipo = X Y, Cio1 = X ;€102 =X Y,
_ 21001677152970420+2023448080787725i _ .A48228196107114014+4201393720385448i _ .10426235521558621-21001677152970420i
Cl3 = X ;€04 = X Y, Ci5 =X ,
— 27375725063996772-37801960585555392i _ 296605598324081204+10426235521558621i _ 2220586921 712159 180+16 949 489 542 438 150i
Clo06 = X Y, Co7 =X ;€108 = X y.
Using the above information, the orbits P9 (D,), P9 (Ds), P (Dy), P% (Dg), P (Dg), P (Dyg)
‘ (x) (xy) (xy) (x) (vy) (x)
and PE”C)) (D3,) become, respectively:
X,y
-3 6-2i
s = X =X=C(C,0=X Yy=y==acy,
_ A3 i _ o A448i
cy = X =X =(3,8 =X Y=y==ey4...,
10426235521558621-21001677152970420i 27375725063996772-37801960585555392i
Clps = X =X=10C1,Cl06 =X Y=y =0y,
_ ,96605598324081204+10426235521558621i _ i _ _ .220586921712159 180+16 949489542438 150i , _ . _
Cloz = X =X =03,C108 =X Y=y==e,...,
_ 34 _ . _ 12
g = X =X=C,C0=X "Y=Yy==~=y,
_ A8 _ i _ o A-26i
i1 = X =X =C3,C1p =X Yy=y==«c4,...,
_ 10426235521558621-21001677152970420i _ .. _ _ 27375725063996772—37801960585555392i ,, __ . _
Clos = X =X=101,C06 =X y=y=cqcy
_96605598324081204+10426235521558621i _ i _ _ ..220586921712159 180+16 949489542438 150i ,, _ . _
Cloz7 = X =X =10(3,C108 =X Y=y==a,...,
_ L 185-72i _ . _ _-152-32i
7 = X =X=0C,C18=X Yy=y=cy
1364185 _ i _ _ A 120-338i,, _ ., _
C19 X =X =(C3,Cpp =X Y=y==c4...,
_ A0433-26512i _ .. _ _ —10544-29888i , _ . _
€3z = X =X=0(1,04=X y=y==q,
_ .86288+40433i _ i _ _ . 162032-50978i ., _ ., _
G35 = X "=x'=c3,036=x "Y=y=cy,...,
and
_ .3231006177-4801002272i _ .. _ _ ,A856348064—-8087354240i , _ . _
C5 = X =X=0C1,C6 =X y=y=qcy,
20975710752+3231006177i _ i 46807769568+1625341886i
Ce7 = X =X =C3,C8 =X Y=Y==C4....
So we get LPY (D,) = 4, LPU9 (D3) = 104, LPU° (Dy) = 8, LP'" (D) = 104, LP' (Dg) = 16,
‘ (xy) A (xy) (xy) (xy) (xy)
LPY9 (Dyg) = 32 and LP% _(Ds,) = 64.
(xy) (xy)
Corollary 3.6. For n = 2X such that k > 2, the length of the period of the complex-type cyclic-Pell orbit LP((”C)) (D)
Xy
is 2n.
Proof. From the orbit PE”C)) (Dy), we can deduce the following:
X,y
T = X,0=Y,...,
_ 13-4 _ 12
Cg = X /C10=X Y.,
_ 185-72i _ —152-32i
cily = X ,C18 =X Yooy
Au+1—4ulyi —4ulz—4ulyi
C8u+1 = X ! z s C8u+2 = X ? ¢ y/' s

where ged (B1,2) = 1. So we need an 1 € N such that 4u = tn fort € IN. If n = 2% such that k > 2, then

u =%, and we obtain LPY? (D,) = 84 =2n. O
(xy)
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4. Conclusion

In Section 2, we defined the complex-type cyclic-Pell sequence and then, we obtained the relationships among the
elements of the sequence and the generating matrix of the sequence. Also, we gave the Simpson formula of the complex-
type cyclic-Pell sequence. In Section 3, we studied the complex-type cyclic-Pell sequence modulo m. Furthermore,
we got the cyclic groups generated by reducing the multiplicative orders of the generating matrices and the auxiliary
equations of these sequences modulo m and then, we investigated the orders of these cyclic groups. Moreover, using
the terms of 2-generator groups which is called the complex-type cyclic-Pell orbit, we redefined the complex-type
cyclic-Pell sequence. Also, the sequence in finite groups was examined in detail. Finally, for some n > 2 as applications
of the results obtained, we got the lengths of the periods of the complex-type cyclic-Pell orbits of the dihedral group

D,, and we reached the length of the period of the complex-type cyclic-Pell orbit LP((i;c)y) (D,) for n = 2 when k > 2.
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