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Abstract. In this paper, we define the complex-type cyclic-Pell sequence and then, we give miscellaneous
properties of this sequence by using matrix method. Also, we study the complex-type cyclic-Pell sequence
modulo m. In addition, we describe the complex-type cyclic-Pell sequence in a 2-generator group and we
investigate that in finite groups in detail. Finally, we obtain the lengths of the periods of the complex-type
cyclic-Pell sequences in dihedral groups D2, D3, D4, D6, D8, D16 and D32 with respect to the generating pair(
x, y

)
.

1. Introduction

The well-known the Pell sequence {Pn} is defined by the following recurrence relation:

Pn = 2Pn−1 + Pn−2

for n ≥ 2 and with initial conditions P0 = 0 and P1 = 1.
The complex Fibonacci sequence

{
F∗n

}
is defined [21] by the following equation: for n ≥ 0

F∗n = Fn + iFn+1

where i =
√
−1 is the imaginary unit and Fn is the nth Fibonacci number (cf. [5, 22]).

Suppose that
{
c j

}k−1

j=0
, (k ≥ 2) is a sequence of real numbers such that ck−1 , 0. The k-generalized Fibonacci

sequence {an}
+∞
n=0 is defined as

an+k = ck−1an+k−1 + ck−2an+k−2 + · · · + c0an

for n ≥ 0 and where a0, a1, . . . , ak−1 are specified by the initial conditions.
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In [23], Kalman gave a number of closed-form formulas for the generalized sequence using the com-
panion matrix as follows:

Ak =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · 0 1
c0 c1 c2 · · · ck−2 ck−1


.

Also, he proved that

(Ak)n


a0
a1
...

ak−1

 =


an
an+1
...

an+k−1


.

In the literature, many interesting properties and applications of the recurrence sequences relevant to
this paper have been studied by many authors; see for example, [3, 7–9, 14, 15, 28, 29]. Especially, in [18]
and [17], the authors defined the new sequences using the quaternions and complex numbers and then
they gave miscellaneous properties and many applications of the sequences defined. In the first part of this
paper, we define the complex-type cyclic-Pell sequence and then, we give miscellaneous properties of this
sequence by the aid of the matrix method.

We recall that when a sequence is composed only of repetitions of a fixed subsequence A sequence
is periodic if after a certain points it consists only of repetitions of a fixed subsequence. We refer to the
number of members in the shortest repeating subsequence as the period of the sequence. For instance, when
a sequence with the terms x, y, z, t, y, z, t, y, z, t, . . . is considered, one would say it is periodic after the initial
term k and it has period 3. Also, the first r terms in a sequence form a repeating subsequence, then it is said to
be simply periodic with period r. For instance, when a sequence with the terms x, y, z, t, x, y, z, t, x, y, z, t, . . .
is considered, one would say it is simply periodic with period 4.

The study of the linear recurrence sequences modulo m began with the earlier work of Wall [30] where
the periods of the ordinary Fibonacci sequences modulo m were investigated. Recently, the theory extended
to some special linear recurrence sequences by several authors; see for example, [20, 26].

For a finitely generated group G = ⟨A⟩, where A = {a1, a2, . . . , an }, the sequence xu = au+1, 0 ≤ u ≤ n − 1,

xn+u =
n∏

v=1
xu+v−1, u ≥ 0 is called the Fibonacci orbit of G with respect to the generating set A, denoted as

FA (G) in [11].
A k-nacci (k-step Fibonacci) sequence in a finite group is a sequence of group elements x0, x1, x2, . . ., xn,

. . . for which, given an initial (seed) set x0, x1, x2, . . ., x j−1, each element is defined by

xn =

{
x0x1 · · · xn−1 for j ≤ n < k,

xn−kxn−k+1 · · · xn−1 for n ≥ k.

We also require that the initial elements of the sequence x0, x1, x2, . . ., x j−1 generate the group, thus forcing
the k-nacci sequence to reflect the structure of the group. The k-nacci sequence of a group G generated by
x0, x1, x2, . . ., x j−1 is denoted by Fk

(
G; x0, x1, x2, . . . , x j−1

)
in [25].

Note also that the orbit of a k-generated group is a k-nacci sequence.
From [17], we use the following definition as our preliminary information.

Definition 1.1. Let G be a k-generated group. For a generating k-tuple (x1, x2, . . . , xk) , the complex-type k-Finonacci
orbit is defined by ai = xi+1, (0 ≤ i ≤ k − 1),

an+k = (an)ik (an+1)ik−1
. . . (an+k−1)i , n ≥ 0
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where the following conditions are achieved for any x, y ∈ G and any integer u:
(i). Let e be the identity of G and consider z = a + ib, where a, b are integers, then
∗ xz
≡ xa(mod |x|)+ib(mod |x|) = xa(mod |x|)xib(mod |x|) = xib(mod |x|)xa(mod |x|) = xib(mod |x|)+a(mod |x|),

∗ xia =
(
xi
)a
= (xa)i,

∗ eu = e,
∗ x0+i0 = e.
(ii). Given z1 = a1 + ib1 and z2 = a2 + ib2, where a1, b1, a2 and b2 are integers, y−z2 x−z1 =

(
xz1 yz2

)−1.
(iii). If yx , xy, then yixi , xiyi.

(iv). yixi =
(
xy

)i and x−1y−1 =
(
xiyi

)i
,

(v). yix = xyi and so xiy−1 =
(
xyi

)i
and x−1yi =

(
xiy

)i
.

The study of the recurrence sequences in groups began with the earlier work of Wall [30]. In the
mid-eighties, Wilcox studied the Fibonacci sequences in abelian groups in [31]. In [12], the theory was
expanded to some finite simple groups by Campbell et al.. There, they defined the Fibonacci length of
the Fibonacci orbit and the basic Fibonacci length of the basic Fibonacci orbit in a 2-generator group. The
concept of Fibonacci length for more than two generators has also been considered; see, for example,
[10, 11]. In [25], Knox signified that a k-nacci (k-step Fibonacci) sequence in a finite group is periodic.
Recently, the theory has been extended to some special linear recurrence sequences by several authors; see
for example, [1, 2, 4, 13, 16, 19, 24, 27]. Deveci and Shannon [17] defined the complex-type k-Fibonacci
orbit of a k-generator group. They proved that the complex-type k-Fibonacci orbit of a k-generator group
is periodic if the group is finite. In the second part of this paper, we redefine the complex-type cyclic-Pell
sequence by means of the elements of 2-generator groups which is called the complex-type cyclic-Pell orbit.
Then we examine the sequence in finite groups in detail. Finally, we obtain the lengths of the periods of
the complex-type cyclic-Pell orbits of the dihedral group Dn for some n ≥ 2 as applications of the results
obtained.

2. The Complex-type Cyclic-Pell Sequence

Now we define the complex-type cyclic-Pell sequence by the following homogeneous linear recurrence
relation for n ≥ 1

p(c,i)
n+2 =


2p(c,i)

n+1 + p(c,i)
n n ≡ 0 (mod 4)

i
(
2p(c,i)

n+1 + p(c,i)
n

)
n ≡ 1 (mod 4)

−2p(c,i)
n+1 − p(c,i)

n n ≡ 2 (mod 4)
−i

(
2p(c,i)

n+1 + p(c,i)
n

)
n ≡ 3 (mod 4)

where p(c,i)
1 = 0, p(c,i)

2 = 1 and i =
√
−1.

Letting

M =
[
−13 −6 − 2i
−6 + 2i −3

]
.

(1)

and by using an induction method on n, we find the relationship between the elements of the sequence{
p(c,i)

n

}
and the matrix M as follows:

(M)n =

 p(c,i)
4n+2 p(c,i)

4n+1
p(c,i)

4n+1 Re
(
p(c,i)

4n

)
− Im

(
p(c,i)

4n+1

) 
.

In [6], Bicknell defined the generating matrix of the Pell numbers, P-matrix as follows:

N =
[

2 1
1 0

]
.

Using the matrices M and N, we have the following useful result.
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Proposition 2.1. For n ≥ 0
det (M)n = (−1)n

· det (N)4n .

Proof. It is well-known that the nth powers of the matrix N is as follows:

(N)n =

[
Pn+1 Pn
Pn Pn−1

]
(2)

for n ≥ 0. Since det M = det (N)4 and from the (1) and (2), we have conclusion.

We use the above definitions and define the matrices:

B1 =

[
2i i
1 0

]
,

B2 =

[
−2 −1
1 0

]
,

B3 =

[
−2i −i
1 0

]
and

B4 =

[
2 1
1 0

]
.

Let M = B4B3B2B1. Using the above identities, we define the folloving matrix:

En = BuBu−1 . . .B1Mk

where n = 4k + u such that u, k ∈N. So we get

En
[

1
0

]
=

[
p(c,i)

n+1
p(c,i)

n

]
(3)

for n = 4k + u such that u, k ∈N.
Now we investigate the Simpson formulas of the complex-type cyclic-Pell sequence.
If n = 4k + 1 (k ∈N), then

En = B1Mk =

 p(c,i)
n+2 −2Re

(
p(c,i)

n+2

)
+ i ·

[
Re

(
p(c,i)

n+3

)
+ Imp(c,i)

n+2

]
p(c,i)

n+1 p(c,i)
n


.

So we get (
p(c,i)

n+2

) (
p(c,i)

n

)
−

(
p(c,i)

n+1

) (
−2Re

(
p(c,i)

n+2

)
+ i ·

[
Re

(
p(c,i)

n+3

)
+ Imp(c,i)

n+2

])
= (−1)k+1

· i.

If n = 4k + 2 (k ∈N), then

En = B2B1Mk =

 p(c,i)
n+2 p(c,i)

n+1
p(c,i)

n+1 −2Re
(
p(c,i)

n+1

)
+ i ·

[
Re

(
p(c,i)

n+2

)
+ Im

(
p(c,i)

n+1

)] 
.

So we get (
p(c,i)

n+2

) (
−2Re

(
p(c,i)

n+1

)
+ i ·

[
Re

(
p(c,i)

n+2

)
+ Im

(
p(c,i)

n+1

)])
−

(
p(c,i)

n+1

) (
p(c,i)

n+1

)
= (−1)k+1

· i.
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If n = 4k + 3 (k ∈N), then

En = B3B2B1Mk =

 p(c,i)
n+2 Re

(
p(c,i)

n+1

)
− Im

(
p(c,i)

n

)
p(c,i)

n+1 p(c,i)
n


.

So we get (
p(c,i)

n+2

) (
p(c,i)

n

)
−

(
p(c,i)

n+1

) [
Re

(
p(c,i)

n+1

)
− Im

(
p(c,i)

n

)]
= (−1)k .

If n = 4k + 4 (k ∈N), then

En =Mk+1 =

 p(c,i)
n+2 p(c,i)

n+1
p(c,i)

n+1 Re
(
p(c,i)

n

)
− Im

(
p(c,i)

n−1

) 
.

So we get (
p(c,i)

n+2

) [
Re

(
p(c,i)

n

)
− Im

(
p(c,i)

n−1

)]
−

(
p(c,i)

n+1

) (
p(c,i)

n+1

)
= (−1)k+1 .

3. The Complex-type Cyclic-Pell Sequence in Groups

If we reduce the sequence
{
p(c,i)

n

}
modulo m, taking least nonnegative residues, then we get the following

recurrence sequence: {
p(c,i)

n (m)
}
=

{
p(c,i)

1 (m) , p(c,i)
2 (m) , . . . , p(c,i)

j (m) , . . .
}

where p(c,i)
j (m) is used to mean the nth element of the complex-type cyclic-Pell sequence when read modulo

m. We note here that the recurrence relations in the sequences
{
p(c,i)

n (m)
}

and
{
p(c,i)

n

}
are the same.

Theorem 3.1. The sequence
{
p(c,i)

n (m)
}

is periodic and the length of its period is divisible by 4.

Proof. Consider the set

R =
{
(z1, z2) | zk’s are complex numbers ak + ibk where
ak and bk are integers such that 0 ≤ ak, bk ≤ m − 1 and k ∈ {1, 2}

}
.

Let |R| be the cardinality of the set R. Since the set R is finite, there are |R| distinct 2-tuples of the complex-
type cyclic-Pell sequence modulo m. Thus, it is clear that at least one of these 2-tuples appears twice in
the sequence

{
p(c,i)

n (m)
}
. Let p(c,i)

u (m) ≡ p(c,i)
v (m) and p(c,i)

u+1 (m) ≡ p(c,i)
v+1 (m). If v − u ≡ 0 (mod 4), then we get

p(c,i)
u+2 (m) ≡ p(c,i)

v+2 (m), p(c,i)
u+3 (m) ≡ p(c,i)

v+3 (m), . . .. So, it is easy to see that the subsequence following this 2-tuple
repeats; that is,

{
p(c,i)

n (m)
}

is a periodic sequence and the length of its period must be divided by 4.

We denote the lengths of periods of the sequence
{
p(c,i)

n (m)
}

by hp(c,i)
n

(m). It is easy to see from the equation
(3), hp(c,i)

n
(m) is the smallest positive integer α such that Eα ≡ I (mod m).

Given an integer matrix A =
[
ai j

]
, A (mod m) means that all entries of A are modulo m, that is,

A (mod m) =
(
ai j (mod m)

)
. Let us consider the set ⟨A⟩m =

{
(A)n (mod m) | n ≥ 0

}
. If (det A,m) = 1, then the

set ⟨A⟩m is a cyclic group; if (det A,m) , 1, then the set ⟨A⟩m is a semigroup. Since det M = −1, the set ⟨M⟩m
is a cyclic group for every positive integer m ≥ 2. From (3), it is easy to see that hp(c,i)

n
(m) = 2 |⟨M⟩m|.

Theorem 3.2. Let ε be a prime. If s is the smallest positive integer such that |⟨M⟩εs+1 | , |⟨M⟩εs |, then |⟨M⟩εs+1 | =
ε |⟨M⟩εs |.
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Proof. Suppose that α is a positive integer and |⟨M⟩m| is denoted by lp(c,i)
n

(m). Let I be 2×2 identity matrix and

(M)
l
p(c,i)
n

(εα+1)
≡ I

(
modεα+1

)
. Then we can derive (M)

l
p(c,i)
n

(εα+1)
≡ I (modεα), which means that lp(c,i)

n
(εα) divides

lp(c,i)
n

(
εα+1

)
. Moreover, we may write (M)

l
p(c,i)
n

(εs)
= I +

(
m(α)

i, j · ε
s
)
, by the binomial theorem. Hence, we obtain:

(M)
l

f (c,i)
n

(εα)·ε
=

(
I +

(
m(α)

i, j · ε
α
))ε
=

ε∑
n=0

(
ε
i

) (
m(α)

i, j · ε
α
)n
≡ I

(
modεα+1

)
.

Then we have (M)
l
p(c,i)
n

(εα)·ε
≡ I

(
modεα+1

)
, which implies that lp(c,i)

n

(
εα+1

)
divides lp(c,i)

n
(εs) · ε. According to

these results, it is seen that lp(c,i)
n

(
εα+1

)
= lp(c,i)

n
(εα) or lp(c,i)

n

(
εα+1

)
= lp(c,i)

n
(εα) · ε, and the latter holds if and only if

there is a m(α)
i, j which is not divisible by ε. Due to fact that we assume s is the smallest positive integer such

that lp(c,i)
n

(
εs+1

)
, lp(c,i)

n
(εs), there is an m(t)

i, j which is not divisible by ε. This shows that lp(c,i)
n

(
εs+1

)
= lp(c,i)

n
(εs) · ε.

So we have the conclusion.

Theorem 3.3. Let m1 and m2 be positive integers with m1,m2 ≥ 2, then
∣∣∣⟨M⟩lcm[m1,m2]

∣∣∣ = lcm
[∣∣∣⟨M⟩m1

∣∣∣ , ∣∣∣⟨M⟩m2

∣∣∣].
Proof. Let |⟨M⟩m| is denoted by lp(c,i)

n
(m) and let lcm [m1,m2] = m. Clearly, (M)

l
p(c,i)
n

(m1)
≡ I (modm1) and

(M)
l
p(c,i)
n

(m2)
≡ I (modm2). Using the least common multiple operation this implies that(M)

l
p(c,i)
n

(m)
≡ I (modm1)

and (M)
l
p(c,i)
n

(m)
≡ I (modm2). So we get

∣∣∣⟨M⟩m1

∣∣∣ | |⟨M⟩m| and
∣∣∣⟨M⟩m2

∣∣∣ | |⟨M⟩m|, which means that lcm
[∣∣∣⟨M⟩m1

∣∣∣ , ∣∣∣⟨M⟩m2

∣∣∣]
divides

∣∣∣⟨M⟩lcm[m1,m2]

∣∣∣. Now we consider as lcm
[∣∣∣⟨M⟩m1

∣∣∣ , ∣∣∣⟨M⟩m2

∣∣∣] = ρ. Then we can write Mρ
≡ I (modm1)

and Mρ
≡ I (modm2), which yields that Mρ

≡ I (modm). Thus, it is seen that lcm
[∣∣∣⟨M⟩m1

∣∣∣ , ∣∣∣⟨M⟩m2

∣∣∣] is divisible

by
∣∣∣⟨M⟩lcm[m1,m2]

∣∣∣. So we have the conclusion.

Let G be a finite j-generator group and let X be the subset of G × G × · · · × G︸             ︷︷             ︸
j times

such that
(
x1, x2, . . . , x j

)
∈ X

if and only if G is generated by x1, x2, . . . , x j.
(
x1, x2, . . . , x j

)
is said to be a generating j-tuple for G.

Definition 3.4. Let G be a 2-generator group and let (x1, x2) be a generating 2-tuple of G. Then, we define the
complex-type cyclic-Pell orbit by

c1 = x1, c2 = x2, cn =


(cn−2) (cn−1)2 for n ≡ 0 (mod4)
(cn−2)i (cn−1)2i for n ≡ 1 (mod4)

(cn−2)−1 (cn−1)−2 for n ≡ 2 (mod4)
(cn−2)−i (cn−1)−2i for n ≡ 3 (mod4)

, (n > 2) .

Let the notation P(i,c)
(x1,x2) (G) denote the complex-type cyclic-Pell orbit of G for generating 2-tuple (x1, x2).

Theorem 3.5. If G is finite, then the complex-type cyclic-Pell orbit of G is a periodic sequence and the length of its
period is divisible by 4.

Proof. Consider the set

W =
{(

(w1)a1(mod|w1 |)+ib1(mod|w1 |) , (w2)a2(mod|w2 |)+ib2(mod|w2 |) :

i =
√

−1, w1,w2 ∈ G and a1, a2, b1, b2 ∈ Z
}

.

Since the group G is finite, W is a finite set. Then for any u ≥ 0, there exists v > u such that cu = cv and
cu+1 = cv+1. If v − u ≡ 0 (mod4), then we get cu+2 = cv+2, cu+3 = cv+3, . . .. Because of the repeating, for all
generating pairs, the sequence P(i,c)

(x1,x2) (G) is periodic and the length of its period must be divided by 4.
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We denote the length of the period of the orbit P(i,c)
(x1,x2) (G) by LP(i,c)

(x1,x2) (G). From the definition of the

orbit P(i,c)
(x1,x2) it is clear that the length of the period of this sequence in a finite group depends on the chosen

generating set and the order in which the assignments of x1, x2 are made.
We will now address the lengths of the periods of the orbits P(i,c)

(x,y)
(D2), P(i,c)

(x,y)
(D3), P(i,c)

(x,y)
(D4), P(i,c)

(x,y)
(D6),

P(i,c)

(x,y)
(D8), P(i,c)

(x,y)
(D16) and P(i,c)

(x,y)
(D32). The dihedral group Dn of order 2n is defined as follows:

Dn = ⟨x, y | xn = y2 =
(
xy

)2 = e⟩

for every n ≥ 2. Note that |x| = n,
∣∣∣y∣∣∣ = 2, xy = yx−1 and yx = x−1y. By direct calculation, we obtain the orbit

P(i,c)

(x,y)
(Dn) as follows:

c1 = x, c2 = y, c3 = xi,
c4 = x−2iy, c5 = x−3, c6 = x6−2iy,
c7 = x4−3i, c8 = x14+8iy, c9 = x13−4i,

c10 = x−12y, c11 = x4+13i, c12 = x−4−26iy,
c13 = x−39−4i, c14 = x74−34iy, c15 = x72−39i,
c16 = x218+112iy, c17 = x185−72i, c18 = x−152−32iy,
c19 = x136+185i, c20 = x120−338iy, c21 = x−491−136i,
c22 = x1102−610iy, c23 = x1356−491i, c24 = x3814+1592iy,
c25 = x2693−1356i, c26 = x−1572−1120iy, c27 = x3596+2693i,
c28 = x5620−4266iy, c29 = x−5839−3596i, c30 = x17298−11458iy,
c31 = x26512−5839i, c32 = x70322+23136iy, c33 = x40433−26512i,
c34 = x−10544−29888iy, c35 = x86288+40433i, c36 = x162032−50978iy,
c37 = x−61523−86288i, c38 = x285078−223554iy, c39 = x533396−61523i,
c40 = x1351870+346600iy, c41 = x631677−533396i, c42 = x88516−720192iy,
c43 = x1973780+631677i, c44 = x4036076−543162iy, c45 = x−454647−1973780i,
c46 = x4945370−4490722iy, c47 = x10955224−454647i, c48 = x26855818+5400016iy,
c49 = x10345385−10955224i, c50 = x6165048−16510432iy, c51 = x43976088+10345385i,
c52 = x94117224−4180338iy, c53 = x1984709−43976088i, c54 = x90147806−92132514iy,
c55 = x228241116+1984709i, c56 = x546630038+88163096iy, c57 = x178310901−228241116i,
c58 = x190008236−368319136iy, c59 = x964879388+178310901i, c60 = x2119767012+11697334iy,
c61 = x201705569−964879388i, c62 = x1716355874−1918061442iy, c63 = x4801002272+201705569i,
c64 = x11318360418+1514650304iy, c65 = x3231006177−4801002272i, c66 = x4856348064−8087354240iy,
c67 = x20975710752+3231006177i, c68 = x46807769568+1625341886iy, c69 = x6481689949−20975710752i,
c70 = x33844389670−40326079618iy, c71 = x101627869988+6481689949i, c72 = x237100129646+27362699720iy,
c73 = x61207089389−101627869988i, c74 = x114685950868−175893040256iy, c75 = x453413950500+61207089389i,
c76 = x1021513851868+53478861478iy, c77 = x168164812345−453413950500i, c78 = x685184227178−853349039522iy,
c79 = x2160112029544+168164812345i, c80 = x5005408286266+517019414832iy, c81 = x1202203642009−2160112029544i,
c82 = x2601001002248−3803204644256iy, c83 = x9766521318056+1202203642009i, c84 = x22134043638360+1398797360238iy,
c85 = x3999798362485−9766521318056i, c86 = x14134446913390−18134245275874iy, c87 = x46035011869804+3999798362485,
c88 = x106204470652998+10134648550904iy, c89 = x24269095464293−46035011869804i, c90 = x57666279724412−81935375188704iy,
c91 = x209905762247212+24269095464293i, c92 = x477477804218836+33397184260118iy, c93 = x91063463984529−209905762247212i,
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c94 = x295350876249778−386414340234306i y, c95 = x982734442715824+91063463984529i, c96 = x2260819761681426+204287412265248i y,

c97 = x499638288515025−982734442715824i, c98 = x1261543184651376−1761181473166400i y, c99 = x4505097389048624+499638288515025i,

c100 = x10271737962748624+761904896136350i y, c101 = x2023448080787725−4505097389048624i, c102 = x6224841801173174−8248289881960898i y,

c103 = x21001677152970420+2023448080787725i, c104 = x48228196107114014+4201393720385448i y, c105 = x10426235521558621−21001677152970420i,

c106 = x27375725063996772−37801960585555392i y, c107 = x96605598324081204+10426235521558621i, c108 = x220 586 921 712 159 180+16 949 489 542 438 150i y.

Using the above information, the orbits P(i,c)

(x,y)
(D2), P(i,c)

(x,y)
(D3), P(i,c)

(x,y)
(D4), P(i,c)

(x,y)
(D6), P(i,c)

(x,y)
(D8), P(i,c)

(x,y)
(D16)

and P(i,c)

(x,y)
(D32) become, respectively:

c5 = x−3 = x = c1, c6 = x6−2iy = y = c2,
c7 = x4−3i = xi = c3, c8 = x14+8iy = y = c4, . . . ,

c105 = x10426235521558621−21001677152970420i = x = c1, c106 = x27375725063996772−37801960585555392iy = y = c2,
c107 = x96605598324081204+10426235521558621i = xi = c3, c108 = x220 586 921 712 159 180+16 949 489 542 438 150iy = y = c4, . . . ,

c9 = x13−4i = x = c1, c10 = x−12y = y = c2,
c11 = x4+13i = xi = c3, c12 = x−4−26iy = y = c4, . . . ,

c105 = x10426235521558621−21001677152970420i = x = c1, c106 = x27375725063996772−37801960585555392iy = y = c2,
c107 = x96605598324081204+10426235521558621i = xi = c3, c108 = x220 586 921 712 159 180+16 949 489 542 438 150iy = y = c4, . . . ,

c17 = x185−72i = x = c1, c18 = x−152−32iy = y = c2,
c19 = x136+185i = xi = c3, c20 = x120−338iy = y = c4, . . . ,

c33 = x40433−26512i = x = c1, c34 = x−10544−29888iy = y = c2,
c35 = x86288+40433i = xi = c3, c36 = x162032−50978iy = y = c4, . . . ,

and

c65 = x3231006177−4801002272i = x = c1, c66 = x4856348064−8087354240iy = y = c2,
c67 = x20975710752+3231006177i = xi = c3, c68 = x46807769568+1625341886iy = y = c4, . . . .

So we get LP(i,c)

(x,y)
(D2) = 4, LP(i,c)

(x,y)
(D3) = 104, LP(i,c)

(x,y)
(D4) = 8, LP(i,c)

(x,y)
(D6) = 104, LP(i,c)

(x,y)
(D8) = 16,

LP(i,c)

(x,y)
(D16) = 32 and LP(i,c)

(x,y)
(D32) = 64.

Corollary 3.6. For n = 2k such that k ≥ 2, the length of the period of the complex-type cyclic-Pell orbit LP(i,c)

(x,y)
(Dn)

is 2n.

Proof. From the orbit P(i,c)

(x,y)
(Dn), we can deduce the following:

c1 = x, c2 = y,. . . ,
c9 = x13−4i, c10 = x−12y,. . . ,

c17 = x185−72i, c18 = x−152−32iy,. . . ,
c8u+1 = x4uλ1+1−4uλ2i, c8u+2 = x−4uλ3−4uλ4iy,. . . ,

where gcd
(
β1, β2

)
= 1. So we need an u ∈ N such that 4u = τn for τ ∈ N. If n = 2k such that k ≥ 2, then

u = n
4 , and we obtain LP(i,c)

(x,y)
(Dn) = 8 n

4 = 2n.
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4. Conclusion

In Section 2, we defined the complex-type cyclic-Pell sequence and then, we obtained the relationships among the
elements of the sequence and the generating matrix of the sequence. Also, we gave the Simpson formula of the complex-
type cyclic-Pell sequence. In Section 3, we studied the complex-type cyclic-Pell sequence modulo m. Furthermore,
we got the cyclic groups generated by reducing the multiplicative orders of the generating matrices and the auxiliary
equations of these sequences modulo m and then, we investigated the orders of these cyclic groups. Moreover, using
the terms of 2-generator groups which is called the complex-type cyclic-Pell orbit, we redefined the complex-type
cyclic-Pell sequence. Also, the sequence in finite groups was examined in detail. Finally, for some n ≥ 2 as applications
of the results obtained, we got the lengths of the periods of the complex-type cyclic-Pell orbits of the dihedral group
Dn and we reached the length of the period of the complex-type cyclic-Pell orbit LP(i,c)

(x,y)
(Dn) for n = 2k when k ≥ 2.
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