TURKISH JOURNAL OF SCIENCE http:/dergipark.gov.tr/tjos
VOLUME 7, ISSUE 3, 219-230
ISSN: 2587-0971

Generalized Inequalities for Quasi-Convex Functions via Generalized
Riemann-Liouville Fractional Integrals
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Abstract. We establish some new Generalized Hermite-Hadamard-type inequalities involving generalized
fractional integrals for quasi-convex functions. Our results are consistent with previous findings in the
literature. The analysis used in the proofs is fairly elementary and based on the use of Holder inequality
and the power inequality.

1. Introduction

The H-H inequality shows that the mean value of a continuous convex function is greater than the value
of the function at the midpoint of this range and less than the arithmetic mean of its endpoints and it has
many applications for real analysis. So, it has been studied by many researchers.

Let us give this unique inequality which is named as H-H inequality in the literature: Let g : I — R be
a convex mapping defined on the interval I C R and ¢, 0 € I with € < §,then

e+0 1 g(e)+g(0)
o(57) < 5 | o< TESEE &

In the case where g is concave, the above inequality is reversed.

Later, many researchers used different classes of convex functions to generalize, improve, and extend
this inequality. (See [3], [7], [8]-[11], [14]-[19], [21], [23]-[44]).

Some researchers have been proven that studies for the inequality of H-H can be generalized with the
help of fractional integrals. So new studies have been carried out in the field of convex functions and
inequalities using the concepts of fractional derivatives and fractional integrals. (For interested researchers
(1], [3]-[6], [11]-[22], [26], [28] and [32]-[44]).

Let’s remind some definitions and inequalities as following:

Corresponding author: HKO mail address: havvaonalan@yyu.edu.tr ORCID:0000-0002-0034-778X, RT ORCID:0000-0001-6047-9007

Received: 27 October 2022; Accepted: 18 December 2022; Published: 30 December 2022

Keywords. Quasi-convex functions; Generalized inequalities; Holder inequality.

2010 Mathematics Subject Classification. 26D15, 26A51, 32F99, 41A17.

Cited this article as: Tiirker R. Kavurmact Onalan H. Generalized Inequalities for Quasi-Convex Functions via Generalized
Riemann-Liouville Fractional Integrals, Turkish Journal of Science, 2022, 7(3), 219-230.



R. Tiirker, H. Kavurmact Onalan /TJOS 7 (3), 219-230 220
9 : [0, 00) — [0, o) satisfying the following conditions:
1 5()
fO le < oo,

1 ) 1
A—lﬁwﬁAlfOrES%Sz

2)

%SAg%foruét

W) <Azt -ul P for S <t <2
where A1, Az Az > 0 are independent of t,u > 0. If 9 (¢) t* is increasing for some a > 0 and %
for some f > 0, then 9 satisfies (2).

In [32], Sarikaya and Ertugral defined new left-sided and right-sided generalized fractional integral

operators which are useful in the proofs of our main results, respectively, as following;:

is decreasing

Definition 1.1. Let g € L[¢, 6] . The generalized fractional integrals .+I3g and s-13g with € > 0 are defined by

* -1
é-+18g x) = f Sy(cx—l )g(l) dl,x > ¢ (3)
oleg(x) = f Six__ll) g)dl,x <o (4)

where 9 : [0, 00) — [0, 00) a function which satisfies fol %l)dl < 00,

The above generalized fractional integrals produce different kinds of fractional integrals as R-L, k—R-L,
Katugampola, conformable, Hadamard, etc... You can find the different cases of the above integral opera-
tors (3) and (4) in the study [32]. (For interested researchers [5], [11], [18]-[21], [26], [34]-[40].)

In [32], Ertugral and Sarikaya achieved the basic H-H inequality with the help of generalized fractional
integrals in (3) and (4) as follows:

Theorem 1.2. Let g : [¢,0] — R be a convex function on (g,06) with ¢ < O,then the following inequalities for
generalized fractional integral hold:

G- 9(e)+9©)

5 )S m [e+15g (0) +5- Isg (¢)] < 5 ’ )

where A (1) = fol Mdl and A (1) # 0.

The following lemma is used to obtain some inequalities that is trapezoid inequalities for generalized
fractional integrals as in [32]:

Lemma 1.3. Let g : [¢,6] — R be a differentiable mapping on (&, 0) with ¢ < 6. If g’ € L], 0], then the following
equality for generalized fractional integrals holds:

g(e) +9(5) 1

2 oA el @ e Ly (O] ©)
O—e¢ 1 )
T 2A0) fo [AQ-D-AD]g (e + 1 -D)o)d,

where A(1) = [ 2D g1 and A (1) # 0.
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The following theorem is an inequality for generalized fractional integrals via the right side of the H-H
inequality obtained by using Lemma 1.3:

Theorem 1.4. Let g : [¢,0] — R be a differentiable mapping on (¢, 0) with € < 0. If
following inequality for generalized fractional integrals hold:

g'| is convex on [e, 8], then the

0 1
‘9(8) ;‘9( - 2A(1) [e+L5g (0) +5- Lsg (e)] 7
6o [ [7(e) + g (5)]
o) NIAQ =D = ADNldI=——"—

You can find some results for this and other generalized fractional integrals in [3], [12] and [42]-[44].
Now, let’s remind some inequalities that we encountered in the results obtained in our study. Firstly,
we give the basic H-H inequality via fractional integrals which is proved by Sarikaya et al. in [34]:

Theorem 1.5. Let g : [¢,0] — R be a positive function with 0 < ¢ < 6 and g € L1 [¢,0]. If g is a convex function
on [g, 0], then the following inequalities fractional integrals hold:

3 0
) [0+ g(0] < L2110 .

(e+6)< T(a+1
2 )7 20-¢)
with a > 0.

Since the results which are obtained in this study by using quasi-convex functions, let us remind the
definition of quasi-convex functions [30]:

Definition 1.6. The function g : I C R — R is said to be quasi-convex if for every x, y € I and w € [0, 1] we have

g(wx+(1-w)y) <max{g(x),q(y)}. 9)

Quasi-convexity is a weaker condition than classical convexity. Cause of this situation, you can say
every convex function is quasi-convex but there are quasi-convex functions that are not convex (See [16]).

The classical H-H inequality for quasi-convex functions was obtained by Dragomir and Pearce in [8] as
follows:

Theorem 1.7. Let g : I — R be a quasi-convex map on I and nonnegative, and suppose €,6 € I € R with ¢ < 6 and
g € L1 [g,0]. Then we have the inequality

O
(sng f g (x)dx < max{g(¢),g(0)}. (10)

The following theorems which are H-H type inequalities for via quasi-convex function was obatained
by Ion in [16] as follows:
Theorem 1.8. Assume ¢,6 € R with ¢ < 6 and g : [¢,0] — R is a differentiable function on (¢,0). If |g'| is
quasi-convex on [g,0], then the following inequality holds true

gl

7

) 1 [ (6~ ¢)supilg (e),|g (©)
9(6);9( )_6_€f€ g(x)dx‘s {)4 (}'

(11)

Theorem 1.9. Assume ¢,06 € Rwith ¢ <6 and g : [¢,0] — R is a differentiable function on (g, 0) . Assume p € R
withp > 1. If |¢’ P-1)

is quasi-convex on [, 8] then the following inequality holds true

0
‘9(6)29( )‘g,igfg(x)dx

_ , _ , _1yy (-0
< orimlefld @ er )

(12)
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The following theorems that are H-H type inequalities for via quasi-convex function was obatained
Alomari et al. in [2] as follows:

q. .
1S quasz-convex

Theorem 1.10. Lef g : I° € R — R be a differentiable mapping on I°, €,6 € I° with € < 6. If |9’

on [g,06], q > 1, then the following inequality holds:
@O+f© 1 °
&

Theorem 1.11. Let g:I° € R — R be a differentiable mapping on I°, €,6 € I° with € < d. If
[&,6], then the following inequality holds:

‘(Slj‘fsg(x)dx—g(gzé)‘ (14)

oo (<52 ol o (52 ol

Theorem 1.12. Let g: I° € R — R be a differentiable function on I°, € <9, . If P\-1)
p > 1, then the following inequality holds:

O
‘5igfg<x>dx—g(#)‘ (15)
_ (r-1)w
) (e e
e o am 2 o)

_ (-1
\
. (max { (2 (e)l’”\(’“‘l)}J ‘ |

Theorem 1.13. Let g : I° € R — R be a differentiable function on I°, €,0 € I° with € < . If}g’
[,6], g = 1, then the following inequality holds:

‘;Tgfjg(x)dx—g(#n (16)
2 st o
+(max{ g (E ;L 6) g (€)|q})1 :

In [26], Ozdemir and Cetin established some fractional inequalities for differentiable quasi-convex
mappings which are connected with H-H inequality as following:

9

o 7ol 13)

<

(sup{lg’ &)

7

g'| is quasi-convex on

7 7

is quasi-convex on [, 0],

gl

q . .
1S quasi-convex on

q

IN

4

q

7

Theorem 1.14. Let g : [¢,0] — R, be a positive function with 0 < € < 0 and g € L1 [g,0]. If g is a quasi-convex
function on [e, 0], then the following inequality for fractional integrals holds:
F'a+1)

26— o V@ + i (0] <maxlg @), 5 ©) a7)

with a > 0.
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Theorem 1.15. Lef g : [¢,0] — R, be a differentiable mapping on (g, 0)
and o > 0, then the following inequality for fractional integrals holds:

g(e) +9() F(Oc+1) ‘
| e [J 9®)+ 15 9] (19
o—¢ 1
wrill- za)max{ }
Theorem 1.16. Let g : [¢,0] — R, be a differentiable mapping on (e, 8) with & < dsuch that g’ € Ly [, 0] .
quasi-convex on [g,0], and p > 1, then the following inequality for fractional integrals holds:
(+90) T(a+1
[ - [w(é +T3g ()] (19)
- 1
< oze (max {|y D
2(ap + 1)r

where;—]+%:1anda€[0,l].

Here we remind a previous basic inequality for generalized fractional integral inequality and a lemma
that produces left sided H-H type inequalities related this basic inequality [3].

Theorem 1.17. Let g : [e,0] — R be a function with ¢ < 6 and g € Ly [¢,0]. If g is a convex function on [, 0],
then we have the following inequalities for generalized fractional integral operators:

3 0
(52) € 5w ey 19 @ gy oo 0] « L5200 0

where the mapping W : [0, 1] — R is defined by

(=
W(x) = fo Mdl. 1)

Lemma 1.18. Let g : [¢,0] — R be differentiable function on (g,0) with ¢ < 0. If g’ € L[¢,d], then we have the
following identity for generalized fractional integral operators:

£+6) 22)

%(1) [(@)*189 (6) +(¢a)- Isg (é)] - 9( 5

I EY: L@ 1)5 ! (@2-De 1o
= 4\1/(1)” w()g ( )dl fo\y(l)g(—z +E)dl]

where the mapping WV (1) is defined as in Theorem 1.16.

The following results for quasi-convex functions with the help of k—Riemann-Liouville fractioal integral
operators obtained by Hussain et al. in [15].

Theorem 1.19. Let g : [¢,6] — R be positive function and g € Ly [, 6] . If g is quasi-convex on [, 8] , the subsequent
inequality for k—fractional integrals is valid:

T (a + k)

260 = [112.9 )+ 3 g (6)] < max{g (¢), 9 () (23)

with & > 0.
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Theorem 1.20. Let g : [¢,6] — R bea differentiable function on (¢,6) such that g’ € Ly [¢,0] . If Tis quasi-convex

on [g,0] and q > 1, the subsequent inequality for k—fractional integrals is valid:

g/

g +g0) Ti(a+k)y , o
v d LALCRY O] 4)
< Lﬂ(ma)(:gl (E))q, g/ (6)|q})%
2<%p+1)"

where%+%:1and%e[0,l].

Theorem 1.21. Let g : [¢,6] — R bea differentiable function on (¢, 0) such that g’ € Ly [, 6] . If Tis quasi-convex

on [g,0] and q > 1, the subsequent inequality for k—fractional integrals is valid:

gl

gEe)+g®) Te(a+k) g «
‘ 2 0o [41296) +i 59 (e)] (25)
b-¢ 1 ’ q ’ q 1?
< (% " 1) (1 - 2—%)(max{g @\, g (6)| })
with ¢ € [0,1].
Corollary 1.22. In Theorem 1.5 of [1], if we take g (x) = 1, we get the inequality:
g@)+g©) Tila+k) , "
‘ v CRUCRYIC) (26)

< (g;i) (1 - %)(max“g' (¢)

7

7 ©))).

with ¢ € [0,1].
By using the above results we build new inequalities related to left-sided and right-sided H-H-type

generalized fractional integral inequalities via quasi-convex functions by using elementary analysis such
as Holder inequality, properties of modulus, power mean inequality.

2. Main Results

The point of this study is to generalize the inequalities for quasi-convex functions found in the literature
with the help of a new fractional integral operator. Throughout this study, for brevity, we use

Ay) = f ’ Mdl and A (1) 0. 27)
0

Firstly, let us obtain H-H inequality for the quasi-convex functions by using this new fractional integral
operator given in (3) and (4).

Theorem 2.1. Let g : [¢,0] — R be a positive function with 0 < ¢ < 6 and g € Ly [¢,0]. If g is a quasi-convex
function on [g, 0], then we have the following inequality for generalized fractional integral operators:

2A1(1) [+I59 (8) +5- Isg (¢)] < max{g(e),g(6)}. 29
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Proof. Since g is quasi-convex on [¢, 6], we have

g (el +(1-1)06) <max{g (), g ()} (29)

and
g((1 =D e +15) < max g (e), g )} (30)
By adding the inequalities (29) and (30), we obtain

% [gUe+ (1 -=1)06)+g((1—-1)e+10)] <max{g(e),q()}. (31)

Multiplying both sides of (31) by S((é N then integrating the resulting inequality with respect to [ over

(0,1], we get
S((6-¢)]) S(6-9))
ZUO — 5 gle+(1- l)é)dl+f0— (A =De+10)dl

< max{g(e), g () fo M9y

Then by using the definition of generalized fractional integral operators, we get the inequality in (28). So
the proof is completed. [

Corollary 2.2. If we choose S (I) = I in Theorem 2.1, the inequality (28) reduces to the inequality (10).
in Theorem 2.1, the inequality (28) reduces to the inequality (17).

a

Corollary 2.3. If we choose 9 (I) = r(

Corollary 2.4. If we choose 9 (I) = %( in Theorem 2.1, the inequality (28) reduces to the inequality (23).

Remark 2.5. Other results for different fractional integral operators as Katugampola, conformable, Hadamard, etc...
can also be found by changing the operator 9 (I) in Theorem 2.1.

Now, by using a lemma in the literature we present new generalized inequalities for quasi-convex
functions via generalized fractional integral operators.

Theorem 2.6. Let g : [e,0] — R, be a differentiable mapping on (e, 0) with € < 0. If |g'| is quasi-convex on [e, 0]
and g € Ly [¢,06], a > 0, then the following inequality for generalized fractional integral operators holds:

‘g<e>+g<é> !
2A (1)

[e+I59 (0) +5- Isg (¢)] (32)

6)| f IAQ=1) = Al)|dl

A (p) is as in (27).

Y+
‘g(é)+9( ) 1 [c+159 (8) +5- Isg (€)]

2 T 2A(1)

2A(1)f A= -

< 2A(l)fu\u D= A()Imax{lg’(

The proof of inequality (32) is completed. [

IA

~No)|dl

far
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Corollary 2.7. If we choose S (I) = I in Theorem 2.6, the inequality (32) reduces to the inequality (11).
Corollary 2.8. If we choose 9 (I) = ¢ in Theorem 2.6, the inequality (32) reduces to the inequality (18).

Corollary 2.9. If we choose 8 (I) = kr 5 in Theorem 2.6, the inequality (32) reduces to the inequality (26).

Corollary 2.10. Other results for dzﬁferent fractional integral operators as Katugampola, conformable, Hadamard,
etc... can also be found by changing the operator 9 (I) in Theorem 2.6.

Theorem 2.11. Let g : [¢,6] — R, be a differentiable mapping on (¢, 0) with € < 0. If ( g’(q is quasi-convex on [, 0]
and g’ € L[, 6], p > 1, then the following inequality for generalized fractional integral operators holds:

'g<e>+g<é>_ 1
A1)

1 1 }
Ly @[] ( fo AQ =D - AP dl)

(33)

[e+I59 (0) +5- Isg (¢)]

6—¢ ,
< m[max{g

A () is as in (27).
Proof. Using Lemma 1.3, properties of modulus and Holder inequality, we have

’9(6)+9(5) 1
2A (1)

—_c 1
6—;)f|A(1—l)—
AQ=-0)—A@DPdl
ZAl)(fl( )~ A )(0

"on [e,0], we get

‘g(e)w(é) 1
2A (1)

O—¢ 1 ;
< 2A(1)(f0 |A(1—l)—A(l)|”dl) [max{

So the proof is completed. [J

[e+Isg (0) +5- Isg ()]

IN

—1)o)|dl

1

IN

g e+ (1= 6)|qdl)q :

[e+Isg (0) +5- Isg ()]

7 lg (6)|q}]% .

A

Corollary 2.12. If we choose 8 (I) = I in Theorem 2.11, the inequality (32) reduces to the inequality (12).
Corollary 2.13. If we choose 9 (I) = 55 in Theorem 2.11, the inequality (32) reduces to the inequality (19).

Corollary 2.14. Ifwe choose 9 () = - (a) in Theorem 2.11, the inequality (32) reduces to the inequality (24).

Corollary 2.15. Other results for different fractional integral operators as Katugampola, conformable, Hadamard,
etc... can also be found by changing the operator S () in Theorem 2.11.

Theorem 2.16. Let g : [, 0]
and g’ € L[g, 6], q = 1, then the following inequality for generalized fractional integral operators holds:
’we) ro@) 1

2A(1)

e Log (0) +5- Isg (e)] (34)

i

< 2A(1) (f IA(1-1) —A(l)ldl)[max{
A (p) is as in (27).
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Proof. Using Lemma 1.3 and power-mean integral inequality, we have

1
’9(5)"'9( ) _ 1 [g+189(5) +5- 139(5)]

2A (1)

6—c¢ 1
mf A=)
1)(f IA1=-1) - A(lldl) (f IAQ-=1)—A(

,0], we have desired result. So, the proof is completed. [

IA

~1)o)|dl

IA

~1)9)| a|’

Since
Corollary 2.17. If we choose S (I) = I in Theorem 2.16, the inequality (34) reduces to the inequality 13.

Corollary 2.18. If we choose S (I) = in Theorem 2.16, the inequality (34) reduces to the inequality (18).

F(a)

Corollary 2.19. If we choose 9 (I) = in Theorem 2.16, the inequality (34) reduces to the inequality (25).

kF (a)

Corollary 2.20. Other results for different fractional integral operators as Katugampola, conformable, Hadamard,
etc... can also be found by changing the operator 9 () in Theorem 2.16.

Now we give some new inequalities for generalized fractional integral operators with Lemma 1.18
obtained by Budak et al. in [3].

Theorem 2.21. Let g: [g,0] ,0] and
g’ € L[g, 0], then the following inequality for generalized fractional integral operators holds:
1 e+
‘2\1/ D) [(@)*IS-’] (0) () Isg(g)] - g( 2 )' (35)
e+o ,
= 4\1/(1 (f 'W(m‘ﬂ) [max{g ( 2 ) g (5)’}
,(E+O
emexly (57l ol

where W (1)is as in (21).

[, 0], we get

2w [ 0@ 4y o] -a(52)

« ol P st
0
< 4(5\11_(;]; |\If(l)|max{g( ) (6)‘}
+f01 W (l)|max{g’(%) N7 (e)|}dl

By making the necessary arrangements the desired result is achieved. [

Corollary 2.22. If we choose 8 (I) = I in Theorem 2.16, we get the inequality (14).
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Theorem 2.23. Let g : [¢,6] — R be differentiable function on (g, 0) with € < . If |9’ Tis quasi-convex on [g, 6] and
g’ € L[e, 0], p > 1, then the following inequality for generalized fractional integral operators holds:

7 (5)|,£1}]

T (217199 @y 19 ©)] (57

< f%%%(ljpyawddi[nmx{f(igénﬁi
+ [max{g' (#) g (€)|pljl}] 7

Proof. Using Lemma 1.18 and Holder inequality, we get

‘ﬁ [(%)*IW (0) + () Tog ‘f)] -9 (S : 6)‘

S—¢ 1 , ; 1
< 4WU)(£|WUNd0 Lﬁ

g/
Corollary 2.24. If we choose 9 (I) = I in Theorem 2.23, we get the inequality in (15).

p-1
a

=
~

-
p-1

7

where W (1)is as in (21).

p=1
v

2-1

P
(1,

on [g, 0] last inequality, the desired result is achieved. [J

If we use the quasi-convexity of

Theorem 2.25. Let g : [¢,0] — R be differentiable function on (g, 6) with € < 6. If |g’|q is quasi-convex on [&, 0] and
g € L[e, 0], q 2 1, then the following inequality for generalized fractional integral operators holds:

w9 @ ey @] -9(57)

< B0 ( | 1 wa)mz) [(max{gr(#) , W});

9

7

. q i
)|
where W (1)is as in (21).
Proof. Using Lemma 1.18 and power-mean inequality, we get
1 e+o
2w [0 @ sy 0] =o(57) %)
o—e [ 1 21
< g, ol (e o)
! (2-1 1
s—c [ (1 G NI A
< M(.[o |‘I’(l)|dl) (\fo V(D) |g (§£+ Té) dl)

1 N
([ wor |

(2-1 1
g (TE ¥ 55)
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If we use the quasi-convexity of |g’| in (36), the desired result is achieved. [J

g/
Corollary 2.26. If we choose 9 (I) = I in Theorem 2.25, we get the inequality in (16).
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