The Casual Characteristics of Offset Curves of a Non-Null Curve and Fibonacci Sequence

Şeyda KILIÇOĞLU ${ }^{\text {a }}$, Süleyman ŞENYURT ${ }^{\text {b }}$

${ }^{a}$ Department of Mathematics, Başkent University, Ankara, Türkiye
${ }^{b}$ Department of Mathematics, Ordu University, Ordu, Türkiye

Abstract

Fibonacci sequence is a very interesting sequence. In this paper, first the casual characteristics of the involute curve, and Mannheim partner of a non-null curve are examined. We find that the number of different forms of the casual characteristics of $n^{\text {th }}$ order involute and Mannheim mate of a spacelike curve can be given using Fibonacci sequence with in a table. Also the kind of the casual characteristics of the $n^{\text {th }}$ order Bertrand mate are examined. It is found that timelike Bertrand curve has 2^{n} different forms, and the $n^{\text {th }}$ order Bertrand mate of a spacelike Bertrand curve with timelike principal normal is always spacelike Bertrand curve with timelike principal normal.

1. Introduction and Preliminaries

Bertrand mate, involute curve, Mannheim partner of a curve are well-known concepts in \mathbf{E}^{3}. Second order Mannheim partner and the second order involute curves in Euclidean 3-space are examined in [5] and [3], respectively. In this study, the casual characteristics of Bertrand mate α_{B}, involute curve α_{I}, Mannheim partner α_{M} of a non-null curve α are examined in 3-dimensional Lorentz space with notation $I L^{3}$. Also the kind of the casual characteristics of the $n^{\text {th }}$ order Bertrand mate, involute curve, Mannheim partner of a non-null curve are given in a table with the number of different forms of casual characteristics. In 3-dimensional Lorentz space $I L^{3}$.is known Lorentz metric with index one, and $\left\{I R^{3},\langle\rangle,\right\}$ is 3-dimensional Lorentz space with notation $I L_{1}^{3}$. For $X \in I L^{3}$; the casual characteristics of any vector X, are
i) if , $\langle X, X\rangle>0, X$ is spacelike vector
ii) if, $\langle X, X\rangle<0, X$ is timelike vector
iii) if , $\langle X, X\rangle=0, X$ is light-like or null vector.

Also $\|X\|=\sqrt{\mid\langle X, X\rangle}$ is the norm of vector X [11]. In 3-dimensional Lorentz space $I L^{3}$.

$$
\begin{equation*}
\langle X, Y\rangle=-x_{1} y_{2}+x_{2} y_{2}+x_{3} y_{3} \tag{1}
\end{equation*}
$$

is known Lorentz metric with index one, and $\left\{I R^{3},\langle\rangle,\right\}$ is 3-dimensional Lorentz space with notation $I L^{3}$. Vectorel product of X and Y is

$$
\begin{equation*}
X \Lambda Y=\left(x_{3} y_{2}-x_{2} y_{3}, x_{1} y_{3}-x_{3} y_{1}, x_{1} y_{2}-x_{2} y_{1}\right) \tag{2}
\end{equation*}
$$

[^0]Bertrand curve was discovered by J. Bertrand in 1850. A Bertrand curve is defined as a special curve which shares its principal normals with another special curve called Bertrand mate. Bertrand curves have the following fundamental properties; which are given in more detail in [4], and [8]. Let α and α_{B} be the arclengthed curves with the parameters s and s_{1}, with the Frenet vector fields T, N, B and T_{B}, N_{B}, B_{B}, respectively, in \mathbf{E}^{3}. Two curves $\left\{\alpha, \alpha_{B}\right\}$ are called Bertrand pairs curves if they have common principal normal lines $[2,6,8]$. Also α_{B} is called Bertrand mate. If the curve α_{B} is Bertrand mate of α, then we may write that

$$
\begin{equation*}
\alpha_{B}(s)=\alpha(s)+\lambda N(s) \tag{3}
\end{equation*}
$$

and $|\lambda|$ is the distance between the arclengthed curves α and α_{B}. Since $\left\{N, N_{B}\right\}$ are linear depended, so we have the equations $N=N_{B}$, and $\left\langle T_{B}, N\right\rangle=0$. Also if the curve α_{B} is Bertrand mate α, then we have that $\left\langle T_{B}, T\right\rangle=\cos \theta=$ constant. The Frenet vector fields T_{B}, N_{B}, B_{B} and $T_{B 2}, N_{B 2}, B_{B 2}$ which are belong to the curves $\alpha_{B}(s)$ and $\alpha_{B 2}\left(s_{12}\right)$ with the arcparametres s_{1} and s_{12}, respectively. Two curves $\left\{\alpha_{B}, \alpha_{B}\right\}$ are called Bertrand pairs curves if they have common principal normal lines [2,6,8,9]. So α_{B} is Bertrand mate of Bertrand mate of $\alpha . \alpha_{B}(s)=\alpha(s)+\lambda N(s)$.Also $\alpha_{B 2}$ is called second order Bertrand mate of α, then we may write that

$$
\begin{align*}
\alpha_{B 2}(s) & =\alpha_{B}(s)+\lambda_{1} N_{B}(s) \tag{4}\\
& =\alpha(s)+\lambda N(s)+\lambda_{1} N_{B}(s) \tag{5}
\end{align*}
$$

and $\left|\lambda_{1}\right|$ is the distance between the arclengthed curves α_{B} and $\alpha_{B 2}$. Third order Bertrand mate of α is Bertrand mate of second order Bertrand mate of α, also it can be written as

$$
\begin{equation*}
\alpha_{B 3}(s)=\alpha(s)+\lambda(s) T(s)+\lambda_{1}(s) N(s)+\lambda_{2} N_{B 2} \tag{6}
\end{equation*}
$$

since $\left\{N_{B}, N_{B 2}\right\}$ are linear depended, so we have the equations $N_{B}=N_{B 2}$ and
$\left\langle T_{B 2}, N_{B}\right\rangle=0$. In similiar way $\mathrm{n}^{\text {th }}$ order Bertrand mate of Bertrand curve α_{B} is n times Bertrand mate of Bertrand curve of α_{B} and written as

$$
\begin{equation*}
\alpha_{B n}(s)=\alpha(s)+\lambda(s) N(s)+\lambda_{1}(s) N_{B}(s)+\ldots+\lambda_{n-1} N_{B(n-1)} \tag{7}
\end{equation*}
$$

Involute-evolute curves are studied in differential geometry books in Euclidean 3-space. The involute of the curve is called sometimes the evolvent. Involvents play a part in the construction of gears. The evolute is the locus of the centers of tangent circles of the given planar curve [6]. In Lorentz space there are two kind of non-null curve, which are timelike and spacelike. Some characterizations for the pair of involute-evolute curves in [1]. Let $\alpha_{I}: I \rightarrow I L^{3}$ be unit speed curve with Frenet-Serret vectors $\left\{T_{I}, N_{I}, B_{I}\right\}$. If the tangent vector T of the curve α is lines to perpendicular on the tangent vector T_{I} of the curve α_{2}, hence if a curve α_{2} is an involute of α and then it has the equation,

$$
\begin{equation*}
\alpha_{I}(s)=\alpha(s)+(c-s) T(s) \tag{8}
\end{equation*}
$$

where $c=$ constant. $[2,6,7]$, that is Frenet vectors give us $N=T_{I}$ and $\left\langle T, T_{I}\right\rangle=0 . \alpha_{2}\left(s_{2}\right)$ is the involute of the curve $\alpha(s)$. Let $\alpha_{12}\left(s_{2}\right)$ be the involute of the involute of curve $\alpha(s)$,also α_{12} is called the second order involute curve α,

$$
\begin{align*}
\alpha_{I 2}(s) & =\alpha_{I}(s)+\lambda_{I 2} T_{I 2}(s) \tag{9}\\
& =\alpha(s)+(c-s) T(s)+\left(c_{2}-s\right) N(s) \tag{10}
\end{align*}
$$

is the parametrization of second order involute curve, since
$\alpha_{I}(s)=\alpha(s)+(c-s) T(s)$. Third order involute curve of an evolute α is the involute curve of second order involute curve and can be written as

$$
\begin{aligned}
\alpha_{I 3}(s) & =\alpha_{22}(s)+\lambda_{I 2} T_{I 2} \\
& =\alpha(s)+(c-s) T(s)+\left(c_{2}-s\right) N(s)+\lambda_{I 2} T_{I 2}
\end{aligned}
$$

In similiar way n times involute of an evolute α_{I} is called $n^{\text {th }}$ order involute of evolute α_{I} and can be writen as

$$
\begin{equation*}
\alpha_{I n}(s)=\alpha(s)+(c-s) T(s)+\left(c_{2}-s\right) N(s)+\lambda_{I 2} T_{I 2}+\ldots+\lambda_{I(n-1)} T_{I(n-1)} . \tag{11}
\end{equation*}
$$

The Mannheim curve was first defined by A. Mannheim in 1878. A curve is called a Mannheim curve if and only if $\frac{k_{1}}{\left(k_{1}^{2}+k_{2}^{2}\right)}$ is a nonzero constant, k_{1} is the curvature and k_{2} is the torsion. Recently, a new definition of the associated curves were given by Liu and Wang [10]. Mannheim curve was redefined by Liu and Wang. According to this new definition, if the the principal normal vector of the first curve and binormal vector of second curve are linearly dependent, then first curve is called Mannheim curve, and the second curve is called the Mannheim partner curve. As a result, they called these new curves as Mannheim partner curves. For more detail see in [10]. Let $\alpha_{M}: I \rightarrow E^{3}$ be the C^{2} - class differentiable unit speed with $\left\{T_{M}, N_{M}, B_{M}\right\}$ be the Frenet frames. If the principal normal vector N of the curve α is linearly dependent on the binormal vector B_{M} of the curve α_{M}, then the pair $\left\{\alpha, \alpha_{M}\right\}$ is said to be Mannheim pair, then α is called a Mannheim curve and α_{M} is called Mannheim partner curve of α. Mannheim partner curve of α can be represented $\alpha=\alpha_{M}+\lambda B_{M}$. for some function λ_{M}, since N and B_{M} are linearly dependent, the equation can be rewritten as

$$
\begin{equation*}
\alpha_{M}(s)=\alpha(s)-\lambda_{M} B_{M}(s) \tag{12}
\end{equation*}
$$

Also $N=B_{M},\left\langle B_{M}, T\right\rangle=0,<\left(T, T_{M}\right)=\cos \theta$ and besides the equality
$\lambda_{M}=\frac{k_{1}}{k_{1}^{2}+k_{2}^{2}}=$ constant is known the offset property, for some non-zero constant, for more detail, see in.[12].
Let $\left\{\alpha, \alpha_{M}\right\}$ and $\left\{\alpha_{M}, \alpha_{M 2}\right\}$ be the Mannheim pairs of α and α_{M} repectively. We called as $\alpha_{M 2}$ is a Second order Mannheim partner of the curve α, which has the following parametrization,

$$
\begin{equation*}
\alpha_{M 2}=\alpha+\lambda_{M} \sin \theta T-\lambda N+\lambda_{M} \cos \theta B \tag{13}
\end{equation*}
$$

since $\alpha_{M}(s)=\alpha(s)-\lambda_{M} B_{M}(s)$. Let $\left\{\alpha, \alpha_{M}\right\}$ and $\left\{\alpha_{M}, \alpha_{M 2}\right\}$ and $\left\{\alpha_{M 2}, \alpha_{M 3}\right\}$ be the Mannheim pairs of $\alpha_{M}, \alpha_{M 2}$ and $\alpha_{M 3}$ repectively. We called as $\alpha_{M 3}$ is a third order Mannheim partner of the curve α. which has the following parametrizations, third order Mannheim partner $\alpha_{M 3}$ can be written as

$$
\begin{aligned}
\alpha_{M 3}(s) & =\alpha_{M 2}-\lambda_{M 2} B_{M 2} \\
& =\alpha+\lambda_{M} \sin \theta T-\lambda N+\lambda_{M} \cos \theta B-\lambda_{M 2} B_{M 2} .
\end{aligned}
$$

In similiar way; n times Mannheim partner of Mannheim curve α_{M} is called, $n^{\text {th }}$ order Mannheim partner of Mannheim curve α_{M}.

2. The casual characteristics of offset curves of a non-null curve and Fibonacci sequence

First, the casual characteristics of higher order involute of a non null curve will be examined in $I L^{3}$. The casual characteristics of higher order involute of a non null curve in $I L^{3}$ can be given as in the following table.

Theorem 2.1. The casual characteristics of higher order involute of a spacelike curve with timelike normal, can be
given as in the following table, in IL^{3};

evolute	involute	$2^{\text {nd }}$ involute	$3^{r d}$ involute	$4^{\text {th }}$ involute	$5^{\text {th }}$ involute	$6^{\text {th }}$ involute
1 diff	1 diff	2 diff	3 diff	5 diff	8 diff	$\begin{gathered} 5+8 \text { diff } \\ \text { sst } \end{gathered}$
			$\begin{gathered} \quad \begin{array}{c} s s t \\ s t s \\ \rightarrow t s s \end{array} \end{gathered}$			sts
sts	$\rightarrow t s s$	$\begin{aligned} & \text { sst } \\ & \text { sts } \end{aligned}$				\rightarrow tss
					$<\begin{aligned} & \text { sst } \\ & s t s\end{aligned}$	$<\begin{aligned} & s s t \\ & s t s\end{aligned}$
					$\rightarrow t s s$ $<{ }^{\text {sst }}$	$\rightarrow \begin{aligned} & \text { sst } \\ & s t s\end{aligned}$
					$<\begin{gathered}\text { sts } \\ \text { sst }\end{gathered}$	$\rightarrow t s s$
					$<{ }_{\text {sts }}$	$<$
					\rightarrow tss	sts
						\rightarrow tss
						sst
						sts

Proof. For a spacelike evolute curve with timelike normal N, binormal B is spacelike.

$$
\left\{\begin{array}{ccc}
T \text { spacelike } & N \text { timelike } & B \text { spacelike } \tag{14}\\
s & t & s
\end{array}\right\}
$$

Since $\left\langle T, T_{I}\right\rangle=0$ and $T_{I}=N$ (timelike), it is trivial that T_{I} must be timelike. The involute of a spacelike curve with timelike normal is always timelike curve.

$$
\left\{\begin{array}{ccc}
T_{I} \text { timelike } & N_{I} \text { spacelike } & B_{I} \text { spacelike } \tag{15}\\
t & s & s
\end{array}\right\}
$$

Hence a spacelike evolute curve with timelike normal N, has the casual characteristics as in the following form

$$
\begin{array}{cc}
\text { evolute } & \text { involute } \\
\text { sts } \rightarrow & \text { tss } \tag{16}
\end{array}
$$

For a spacelike evolute curve with timelike binormal, principal normal N is spacelike, hence

$$
\left\{\begin{array}{ccc}
T \text { spacelike } & N \text { spacelike } & \text { B timelike } \tag{17}\\
s & s & t
\end{array}\right\}
$$

Since $<T, T_{I}>=0$ and $T_{I}=N$ (spacelike), tangent T_{I} must be spacelike. Hence the involute of a spacelike curve with timelike binormal is always spacelike curve. So normal N_{I} and binormal B_{I} must be spacelike

$$
\left\{\begin{array}{ccc}
\text { Tangent } T_{I} & \text { Normal } N_{I} & \text { Binormal } B_{I} \tag{18}\\
s & s & t \\
s & t & s
\end{array}\right\}
$$

The casual characteristics of spacelike evolute and spacelike involute have the following two forms

$$
\begin{array}{cc}
\text { evolute } & \text { involute } \\
\text { sst } & <\begin{array}{c}
\text { sst } \\
\text { sts }
\end{array} \tag{19}
\end{array}
$$

For a timelike evolute curve with timelike tangent vector T, normal vector N and binormal vector B are spacelike, lets use the following table

$$
\left\{\begin{array}{ccc}
T \text { timelike } & N \text { spacelike } & B \text { spacelike } \tag{20}\\
t & s & s
\end{array}\right\}
$$

for evolute-involute curve we know that $N=T_{I}$ and $\left.<T, T_{I}\right\rangle=0$. Since tangent vector T is timelike and two timelike vectors are never orthogonal, T_{I} is not timelike, hence it is trivial that a timeline curve has always spacelike involute curve. Further a timelike evolute curve has spacelike involute curve with timelike normal N_{I}, or timelike normal B_{I}.

$$
\left\{\begin{array}{ccc}
\text { Tangent } T_{I} & \text { Normal } N_{I} & \text { Binormal } B_{I} \tag{21}\\
s & s & t \\
s & t & s
\end{array}\right\}
$$

The casual characteristics of timelike evolute and spacelike involute have the following two forms

evolute	involute tss
$<$sst sts	

The casual characteristics of Second order involute curve of spacelike evolute with timelike normal N, is a spacelike curve with timelike binormal, or spacelike binormal. If we use the form tables 16, 19 and 22 we have the following

It is trivial from the $16,19,22$ and 23 . If we go on we have the table with casual characteristics of higher order involute of a spacelike curve with timelike normal.

Corollary 2.2. The casual characteristics of higher order involute of a timelike curve has the following table

Definition 2.3. In mathematics, the Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence, and characterized by the fact that every number after the first two is the sum of the two preceding ones:

$$
\begin{equation*}
\{1,1,2,3,5,8,13,21,34,55,89,144, \ldots\} \tag{24}
\end{equation*}
$$

Theorem 2.4. The number of the different type the casual characteristics of $n^{\text {th }}$ order involute of a spacelike curve timelike normal can be given using Fibonacci numbers.
Proof. In each step for tss and sst, there are two options, but for sts there is only one form so we can write the numbers of the forms by one by as in the following way

$$
\begin{aligned}
& 1 \\
2 & =2.1+0.1 \\
2+1 & =2.1+1.1 \\
2+1+2 & =2.2+1.1 \\
2+1+2+2+2+2+1 & =2.3+2.1 \\
2+1+2+1 & =2.5+2.1
\end{aligned}
$$

so we can write the following sequence

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1}=1=2 \cdot 0+1 \cdot 1 \\
& a_{2}=2=2 \cdot 1+0 \cdot 1 \\
& a_{3}=3=2 \cdot 1+1 \cdot 1=2 \cdot a_{1}+a_{0} \cdot 1 \\
& a_{4}=5=2 \cdot 2+1 \cdot 1=2 \cdot a_{2}+a_{1} \cdot 1 \\
& a_{5}=8=2 \cdot 3+2 \cdot 1=2 \cdot a_{3}+a_{2} \cdot 1 \\
& a_{6}=13=2 \cdot 5+3 \cdot 1=2 \cdot a_{4}+a_{3} \cdot 1 \\
& a_{7}=21=2 \cdot 8+5 \cdot 1=2 \cdot a_{5}+a_{4} \cdot 1
\end{aligned}
$$

$$
a_{n}=2 \cdot a_{n-2}+a_{n-3} \cdot 1
$$

with so its general term is

$$
\begin{equation*}
a_{n}=2 \cdot a_{n-2}+a_{n-3} \cdot 1, \quad n \geq 3 \tag{25}
\end{equation*}
$$

Hence

$$
\begin{equation*}
a_{n+1}=2 \cdot a_{n-1}+a_{n-2} \cdot 1 \tag{26}
\end{equation*}
$$

and if we write and add the first two terms

$$
\begin{aligned}
a_{n} & =2 \cdot a_{n-2}+a_{n-3} \cdot 1 \\
a_{n-1} & =2 \cdot a_{n-3}+a_{n-4} \cdot 1
\end{aligned}
$$

we find

$$
\begin{aligned}
a_{n}+a_{n-1} & =2 \cdot a_{n-2}+a_{n-3} \cdot 1+2 \cdot a_{n-3}+a_{n-4} \cdot 1 \\
& =2 \cdot a_{n-2}+2 \cdot a_{n-3}+a_{n-3} \cdot 1+a_{n-4} \cdot 1 \\
& =2\left(a_{n-2}+a_{n-3}\right)+\left(a_{n-3}+a_{n-4}\right) \\
& =2 a_{n-1}+a_{n-2} \\
& =a_{n+1} .
\end{aligned}
$$

When we calculate the number of the different forms we find the Fibonacci numbers. This complete the proof.
The casual characteristics of higher order Mannheim partner of a non null Mannheim curve in $I L^{3}$ can be given as in the following table. For a non-null Mannheim curve there are the following forms;

Theorem 2.5. The the casual characteristics of $n^{\text {th }}$ order Mannheim partner of a spacelike curve with timelike normal can be given as in the following table, in $I L^{3}$.

Proof. For a spacelike Mannheim curve with timelike normal N, binormal B is spacelike, that is

$$
\left\{\begin{array}{ccc}
T \text { spacelike } & N \text { timelike } & B \text { spacelike } \tag{28}\\
s & t & s
\end{array}\right\}
$$

since $N=B_{M}$ (timelike) and $\left\langle N, T_{M}\right\rangle=0$, hence B_{M} must be timelike. Hence it is trivial that tangent T_{M} and normal N_{M} must be spacelike

$$
\left\{\begin{array}{ccc}
T_{M} \text { spacelike } & N_{M} \text { spacelike } & B_{M} \text { timelike } \tag{29}\\
s & s & t
\end{array}\right\}
$$

hence we have

$$
\begin{array}{cc}
\text { Mann. curve } & \text { Mann. partner } \tag{30}\\
\text { sts } & \text { sst }
\end{array}
$$

For a spacelike Mannheim curve with timelike binormal B, normal N and tangent T are spacelike,

$$
\left\{\begin{array}{ccc}
T \text { spacelike } & N \text { timelike } & B \text { spacelike } \tag{31}\\
s & s & t
\end{array}\right\}
$$

since $N=B_{M}$ (spacelike) and $\left\langle N, T_{M}\right\rangle=0$, hence B_{M} must be spacelike. Hence it is trivial that tangent T_{M} or normal N_{M} must be spacelike, that is; it is trivial that; a spacelike Mannheim curve with timelike binormal B has Mannheim partner with always spacelike binormal vector B_{M}. Mannheim partner is timelike or spacelike.

Tangent T_{M}	Normal N_{M}	Binormal B_{M}
s	t	s
t	s	s

Hence the casual characteristics of have the following two forms

Mann. curve	Mann. partner
sst	$<$sts tss

For a timelike Mannheim curve with timelike tangent vector T, normal vector N and binormal vector B are spacelike, lets use the following table

$$
\left\{\begin{array}{ccc}
\text { T timelike } & N \text { spacelike } & B \text { spacelike } \tag{34}\\
t & s & s
\end{array}\right\}
$$

We know that for Mannheim pairs $N=B_{M}$ (spacelike) and $\left\langle N, T_{M}\right\rangle=0$, hence it is trivial that; a timelike curve has spacelike or time like Mannheim partner with always spacelike binormal vector B_{M},

$$
\left\{\begin{array}{ccc}
\text { Tangent } T_{M} & \text { Normal } N_{M} & \text { Binormal } B_{M} \tag{35}\\
s & t & s \\
t & s & s
\end{array}\right\}
$$

The casual characteristics of timelike Mannheim curve and Mannheim partner have the following two forms

Mann.curve Mann.partner
 tss $\quad<\begin{aligned} & \text { tss } \\ & \text { sts }\end{aligned}$

The casual characteristics of Second order Mannheim partner of spacelike Mannheim curve with timelike normal N, is a spacelike curve with timelike binormal or spacelike binormal. It is trivial that

Mann. curve	Mann.part	$2^{\text {nd }}$ order Mann.part
sts \rightarrow	sst $<$	tss
		sts

from the 30, 33 and 36. If we go on, we have the table with casual characteristics of higher order Mannheim partner of a spacelike curve with timelike normal, as a result, we have the proof.

Corollary 2.6. The casual characteristics of higher order Mannheim partner of a timelike Mannheim curve has the following table

Theorem 2.7. The number of the different type the casual characteristics of $n^{\text {th }}$ order Mannheim partner of a spacelike curve with timelike normal can be given using Fibonacci numbers.

Proof. In each step for forms sts and sst, there are two options, but for the form tss there is only one form so we can write the numbers of the forms by one by as similiar in the theorem 2.2 using Fibonacci numbers.

2.1. The casual characteristics of higher order Bertrand mate

The casual characteristics of higher order Bertrand mate of a non-null Bertrand curve in $I L^{3}$ can be given as in the following table. For a non-null Bertrand mate of non-null Bertrand curves there are the following forms;

Theorem 2.8. The number of the $n^{\text {th }}$ order Bertrand mate with different type of casual characteristics of a spacelike Bertrand curve with timelike binormal and a timelike Bertrand curve is given as 2^{n}, also the $n^{\text {th }}$ order Bertrand mate of a spacelike Bertrand curve with timelike principal normal is always spacelike curve with timelike principal normal.

spacelike Bert. curve with	Bert mate	$2^{\text {nd }}$ Bert mate	$3^{\text {rd }}$ Bert mate	$4^{\text {th }}$ Bert mate	$n^{\text {th }}$ Ber mate
melike normal sts	\rightarrow sts				

Proof. If α isa timelike Bertrand curve, it has timelike tangent vector T, and normal N and binormal B are spacelike.

$$
\left\{\begin{array}{ccc}
\text { T timelike } & N \text { spacelike } & B \text { spacelike } \tag{40}\\
t & s & s
\end{array}\right\}
$$

Also since $N=N_{B}, N_{B}$ is spacelike hence normal N_{B} and binormal B_{B} can be timelike or spacelike. and $N=N_{B}, \quad\left\langle T_{B}, N\right\rangle=0$. Hence

$$
\left\{\begin{array}{ccc}
\text { Tangent } T_{B} & \text { Normal } N_{B} & \text { Binormal } B_{B} \tag{41}\\
s & s & t \\
t & s & s
\end{array}\right\}
$$

are the forms of the casual characteristics of Bertrand mate. The Bertrand mate of a timelike Bertrand curve is either spacelike curve with timelike binormal or timelike curve, and we will show this result as in the following way;

$$
\begin{array}{cc}
\text { Bertrand } & \text { Bertrand mate } \\
\text { tss } & <\begin{array}{l}
s s t \\
t s s
\end{array} \tag{42}
\end{array}
$$

For a spacelike Bertrand curve with timelike binormal vector as in

$$
\left\{\begin{array}{ccc}
T \text { spacelike } & N \text { spacelike } & \text { B timelike } \tag{43}\\
s & s & t
\end{array}\right\}
$$

it is trivial that a spacelike curve has spacelike tangent vector T, with timelike binormal B and is spacelike normal N, since $N=N_{B}$, normal N_{B} is always spacelike, and

$$
\begin{equation*}
N=N_{B}, \quad\left\langle T_{B}, N\right\rangle=0 \tag{44}
\end{equation*}
$$

hence and Binormal can be timelike or spacelike, it is trivial

$$
\left\{\begin{array}{ccc}
\text { Tangent } T_{B} & \text { Normal } N_{B} & \text { Binormal } B_{B} \tag{45}\\
s & s & t \\
t & s & s
\end{array}\right\}
$$

Hence the Bertrand mate of a spacelike Bertrand curve with timelike binormal vector B, is either timelike curve or spacelike curve with timelike binormal. They have following casual charastics;

Bertrand	Bertrand mate
sst	$<$$s s t$ $t s s$

For a spacelike Bertrand curve with timelike normal as in

$$
\left\{\begin{array}{ccc}
T \text { spacelike } & N \text { timelike } & B \text { spacelike } \tag{47}\\
s & t & s
\end{array}\right\}
$$

Bertrand mate of a spacelike Bertrand curve with timelike normal N curve since and $N=N_{B}, \quad\left\langle T_{B}, N\right\rangle=0$ and Normal N_{B} is always timelike, also T_{B} is spacelike, hence Bertrand mate is spacelike, we have

$$
\left\{\begin{array}{ccc}
T_{B} \text { spacelike } & N_{B} \text { timelike } & B_{B} \text { spacelike } \tag{48}\\
s & t & s
\end{array}\right\}
$$

Bertrand mate of a spacelike Bertrand curve with timelike normal vector is always spacelike curve with timelike normal as in following casual charastics;

Bertrand curve	Bertrand mate sts
\rightarrow sts	

Using the 42, 46 and 49, we have the following table

timelike Bert. curve tss	Bert. mate $<\begin{aligned} & s s t \\ & s t s \end{aligned}$
spacelike Bert. curve timelike binormal sst	$<\begin{align*} & s s t \tag{50}\\ & \text { sts } \end{align*}$
spacelike Bert. curve timelike normal sts	Bert. mate sts

The casual characteristics of second order Bertrand mate of a non - null Bertrand curve is trivial from the 42, 46 and 49

timelike	Bert. mate	$2^{\text {nd }}$ Bert. mate
Bert. curve	2 different	4 different
tss <	$\begin{aligned} & s s t \\ & s t s \end{aligned}$	$<\begin{aligned} & s s t<\begin{array}{c} s s \\ t s s \\ t s s \end{array}<\begin{array}{l} s s t \\ t s s \end{array} \end{aligned}$
spacelike		$s s t<s_{\text {st }}$
Bert. curve	sst	$<\quad \text { tss }$
timelike binormal sst spacelike	sts	tss $<\begin{aligned} & \text { sst } \\ & \text { tss }\end{aligned}$
Bert. curve	1 Bert. mate	1 Bert. mate
timelike normal sts	sts	sts

References

[1] Calıskan, M., \& Bilici, M. (2002). Some characterizations for the pair of involute-evolute curves in Euclidean space E^{3}. Bulletin of Pure and Applied Sciences, 21(2), 289-294.
[2] Hacısalihoğlu H. H. (1994) Differential Geometry(in Turkish), Academic Press Inc. Ankara.
[3] Kılıçoğlu, Ş., \& Şenyurt, S. (2017). On the second order involute curves in E^{3}. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(2), 332-339.
[4] Hoschek, J. (1971) Liniengeometrie, BI-Hochschulskripte, Zurich.
[5] Kılıçoglu, S., \& Senyurt, S. (2017). On the Second Order Mannheim Partner Curve in E^{3}. Mathematical Combinatorics, 1, 71-77.
[6] Lipschutz, M. M. (1969). Schaum's Outlines of Differential Geometry McGraw-Hill. Inc. USA.
[7] Eren, K., Yesmakhanova, K., Ersoy, S., \& Myrzakulov, R. (2022). Involute evolute curve family induced by the coupled dispersionless equations. Optik, 270, 169915.
[8] Schief, W. K. (2003). On the integrability of Bertrand curves and Razzaboni surfaces. Journal of Geometry and Physics, 45(1-2), 130-150.
[9] Eren, K. (2023). Forming coupled dispersionless equations of families of Bertrand curves. Turkish Journal of Mathematics, 47(1), 87-97.
[10] Liu, H., \& Wang, F. (2008). Mannheim partner curves in 3-space. Journal of Geometry, 88(1-2), 120-126.
[11] O'neill, B. (1983). Semi-Riemannian geometry with applications to relativity. Academic press.
[12] Orbay, K., \& Kasap, E. (2009). On Mannheim partner curves in E^{3}. International Journal of Physical Sciences, 4(5), 261-264.

[^0]: Corresponding author: SŞ mail address: senyurtsuleyman52@gmail.com ORCID:0000-0003-1097-5541, ŞK ORCID::0000-0003-02521574

 Received: 05 October 2023; Accepted: 22 November 2023; Published: 31 December 2023
 Keywords. Lorentz metric; casual characteristic; involute curve; Bertrand mate; Mannheim partner
 2010 Mathematics Subject Classification. 53A04
 Cited this article as: Kılıçoğlu, Ş., \& Şenyurt, S. (2023). The Casual Characteristics of Offset Curves of a Non-Null Curve and Fibonacci Sequence, Turkish Journal of Science, 8(3), 136-146.

