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Abstract. Fibonacci sequence is a very interesting sequence. In this paper, first the casual characteristics
of the involute curve, and Mannheim partner of a non-null curve are examined. We find that the number of
different forms of the casual characteristics of nth order involute and Mannheim mate of a spacelike curve
can be given using Fibonacci sequence with in a table. Also the kind of the casual characteristics of the
nth order Bertrand mate are examined. It is found that timelike Bertrand curve has 2n different forms, and
the nth order Bertrand mate of a spacelike Bertrand curve with timelike principal normal is always spacelike
Bertrand curve with timelike principal normal.

1. Introduction and Preliminaries

Bertrand mate, involute curve, Mannheim partner of a curve are well-known concepts in E3. Second
order Mannheim partner and the second order involute curves in Euclidean 3-space are examined in [5] and
[3], respectively. In this study, the casual characteristics of Bertrand mate αB, involute curve αI, Mannheim
partner αM of a non-null curve α are examined in 3-dimensional Lorentz space with notation IL3. Also
the kind of the casual characteristics of the nth order Bertrand mate, involute curve, Mannheim partner
of a non-null curve are given in a table with the number of different forms of casual characteristics. In
3-dimensional Lorentz space IL3.is known Lorentz metric with index one, and

{
IR3, ⟨, ⟩

}
is 3-dimensional

Lorentz space with notation IL3
1. For X ∈ IL3; the casual characteristics of any vector X, are

i) if , ⟨X,X⟩ > 0, X is spacelike vector
ii) if , ⟨X,X⟩ < 0, X is timelike vector
iii) if , ⟨X,X⟩ = 0, X is light-like or null vector.
Also ∥X∥ =

√
|⟨X,X⟩|is the norm of vector X [11]. In 3-dimensional Lorentz space IL3.

⟨X,Y⟩ = −x1y2 + x2y2 + x3y3 (1)

is known Lorentz metric with index one, and
{
IR3, ⟨, ⟩

}
is 3-dimensional Lorentz space with notation

IL3.Vectorel product of X and Y is

XΛY =
(
x3y2 − x2y3, x1y3 − x3y1, x1y2 − x2y1

)
(2)
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Bertrand curve was discovered by J. Bertrand in 1850. A Bertrand curve is defined as a special curve
which shares its principal normals with another special curve called Bertrand mate. Bertrand curves have
the following fundamental properties; which are given in more detail in [4], and [8]. Let α and αB be
the arclengthed curves with the parameters s and s1, with the Frenet vector fields T,N,B and TB,NB,BB,
respectively, in E3. Two curves {α, αB} are called Bertrand pairs curves if they have common principal
normal lines [2, 6, 8]. Also αB is called Bertrand mate. If the curve αB is Bertrand mate of α, then we may
write that

αB (s) = α (s) + λN (s) (3)

and |λ| is the distance between the arclengthed curves α and αB. Since {N,NB} are linear depended, so
we have the equations N = NB, and ⟨TB,N⟩ = 0. Also if the curve αB is Bertrand mate α, then we have
that ⟨TB,T⟩ = cosθ = constant. The Frenet vector fields TB,NB,BB and TB2,NB2,BB2 which are belong to
the curves αB(s) and αB2 (s12) with the arcparametres s1 and s12, respectively. Two curves {αB, αB} are called
Bertrand pairs curves if they have common principal normal lines [2, 6, 8, 9]. So αB is Bertrand mate of
Bertrand mate of α. αB (s) = α (s) + λN (s) .Also αB2 is called second order Bertrand mate of α, then we may
write that

αB2 (s) = αB (s) + λ1NB (s) (4)
= α (s) + λN (s) + λ1NB (s) (5)

and |λ1| is the distance between the arclengthed curves αB and αB2. Third order Bertrand mate of α is
Bertrand mate of second order Bertrand mate of α, also it can be written as

αB3 (s) = α (s) + λ(s)T (s) + λ1(s)N (s) + λ2NB2 (6)

since {NB,NB2} are linear depended, so we have the equations NB = NB2 and
⟨TB2,NB⟩ = 0. In similiar way nth order Bertrand mate of Bertrand curve αB is n times Bertrand mate of
Bertrand curve of αB and written as

αBn (s) = α (s) + λ(s)N (s) + λ1(s)NB (s) + ... + λn−1NB(n−1) (7)

Involute-evolute curves are studied in differential geometry books in Euclidean 3-space. The involute
of the curve is called sometimes the evolvent. Involvents play a part in the construction of gears. The
evolute is the locus of the centers of tangent circles of the given planar curve [6]. In Lorentz space there
are two kind of non-null curve, which are timelike and spacelike. Some characterizations for the pair of
involute-evolute curves in [1]. Let αI : I → IL3 be unit speed curve with Frenet-Serret vectors

{
TI ,NI ,BI

}
. If

the tangent vector T of the curve α is lines to perpendicular on the tangent vector TI of the curve α2 , hence
if a curve α2 is an involute of α and then it has the equation,

αI(s) = α(s) + (c − s)T(s), (8)

where c = constant. [2, 6, 7], that is Frenet vectors give us N = TI and ⟨ T,TI⟩ = 0. α2 (s2) is the involute
of the curve α (s) . Let αI2

(
s2

)
be the involute of the involute of curve α (s) ,also αI2 is called the second order

involute curve α,

αI2 (s) = αI (s) + λI2TI2 (s) (9)
= α (s) + (c − s)T (s) + (c2 − s)N (s) (10)

is the parametrization of second order involute curve, since
αI(s) = α(s) + (c − s)T(s). Third order involute curve of an evolute α is the involute curve of second order
involute curve and can be written as

αI3 (s) = α22 (s) + λI2TI2

= α (s) + (c − s)T (s) + (c2 − s)N (s) + λI2TI2
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In similiar way n times involute of an evolute αI is called nth order involute of evolute αI and can be writen
as

αIn (s) = α (s) + (c − s)T (s) + (c2 − s)N (s) + λI2TI2 + ... + λI(n−1)TI(n−1). (11)

The Mannheim curve was first defined by A. Mannheim in 1878. A curve is called a Mannheim curve if
and only if k1

(k2
1+k2

2)
is a nonzero constant, k1 is the curvature and k2 is the torsion. Recently, a new definition of

the associated curves were given by Liu and Wang [10]. Mannheim curve was redefined by Liu and Wang.
According to this new definition, if the the principal normal vector of the first curve and binormal vector
of second curve are linearly dependent, then first curve is called Mannheim curve, and the second curve is
called the Mannheim partner curve. As a result, they called these new curves as Mannheim partner curves.
For more detail see in [10]. Let αM : I → E3 be the C2

− class differentiable unit speed with
{
TM,NM,BM

}
be

the Frenet frames. If the principal normal vector N of the curve α is linearly dependent on the binormal
vector BM of the curve αM, then the pair {α, αM} is said to be Mannheim pair, then α is called a Mannheim
curve and αM is called Mannheim partner curve of α. Mannheim partner curve of α can be represented
α = αM + λBM. for some function λM, since N and BM are linearly dependent, the equation can be rewritten
as

αM (s) = α (s) − λMBM (s) . (12)

Also N = BM , ⟨BM,T⟩ = 0, < (T,TM) = cosθ and besides the equality
λM =

k1

k2
1+k2

2
= constant is known the offset property, for some non-zero constant, for more detail, see in.[12].

Let {α, αM} and {αM, αM2} be the Mannheim pairs of α and αM repectively.We called as αM2 is a Second
order Mannheim partner of the curve α, which has the following parametrization,

αM2 = α + λMsinθT − λN + λMcosθB (13)

since αM (s) = α (s) − λMBM (s) . Let {α, αM} and {αM, αM2} and {αM2, αM3} be the Mannheim pairs of αM , αM2
and αM3 repectively. We called as αM3 is a third order Mannheim partner of the curve α. which has the
following parametrizations, third order Mannheim partner αM3 can be written as

αM3 (s) = αM2 − λM2BM2

= α + λMsinθT − λN + λMcosθB − λM2BM2.

In similiar way; n times Mannheim partner of Mannheim curve αM is called, nth order Mannheim partner
of Mannheim curve αM.

2. The casual characteristics of offset curves of a non-null curve and Fibonacci sequence

First, the casual characteristics of higher order involute of a non null curve will be examined in IL3. The
casual characteristics of higher order involute of a non null curve in IL3 can be given as in the following
table.

Theorem 2.1. The casual characteristics of higher order involute of a spacelike curve with timelike normal, can be
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given as in the following table, in IL3;

evolute involute 2ndinvolute 3rdinvolute 4thinvolute 5thinvolute 6thinvolute
1 di f f 1 di f f 2 di f f 3 di f f 5 di f f 8 di f f 5 + 8 di f f

sts → tss
sst
sts

<
sst
sts

→ tss

<
sst
sts

→ tss

<
sst
sts

<
sst
sts

→ tss

<
sst
sts

<
sst
sts

→ tss

<
sst

sts
→ tss

<
sst
sts

→
sst
sts

→ tss

<
sst

sts
→ tss

sst
sts

.. ...

Proof. For a spacelike evolute curve with timelike normal N, binormal B is spacelike.{
T spacelike N timelike B spacelike

s t s

}
(14)

Since < T,TI >= 0 and TI = N (timelike), it is trivial that TI must be timelike. The involute of a spacelike
curve with timelike normal is always timelike curve.{

TI timelike NI spacelike BI spacelike
t s s

}
(15)

Hence a spacelike evolute curve with timelike normal N, has the casual characteristics as in the following
form

evolute involute
sts→ tss (16)

For a spacelike evolute curve with timelike binormal, principal normal N is spacelike, hence{
T spacelike N spacelike B timelike

s s t

}
(17)

Since < T,TI >= 0 and TI = N (spacelike), tangent TI must be spacelike.Hence the involute of a spacelike
curve with timelike binormal is always spacelike curve. So normal NI and binormal BI must be spacelike

Tan1ent TI Normal NI Binormal BI
s
s

s
t

t
s

 (18)

The casual characteristics of spacelike evolute and spacelike involute have the following two forms

evolute involute

sst <
sst
sts

(19)
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For a timelike evolute curve with timelike tangent vector T, normal vector N and binormal vector B are
spacelike, lets use the following table{

T timelike N spacelike B spacelike
t s s

}
(20)

for evolute-involute curve we know that N = TI and< T,TI >= 0. Since tangent vector T is timelike and
two timelike vectors are never orthogonal, TI is not timelike, hence it is trivial that a timeline curve has
always spacelike involute curve. Further a timelike evolute curve has spacelike involute curve with timelike
normal NI, or timelike normal BI.

Tan1ent TI Normal NI Binormal BI
s
s

s
t

t
s

 (21)

The casual characteristics of timelike evolute and spacelike involute have the following two forms

evolute involute

tss <
sst
sts

(22)

The casual characteristics of Second order involute curve of spacelike evolute with timelike normal N, is a
spacelike curve with timelike binormal, or spacelike binormal. If we use the form tables 16, 19 and 22 we have
the following

evolute involute 2ndinvolute
1 different 2 different

sts tss <
sst
sts

(23)

It is trivial from the 16, 19 , 22 and 23. If we go on we have the table with casual characteristics of higher
order involute of a spacelike curve with timelike normal.

Corollary 2.2. The casual characteristics of higher order involute of a timelike curve has the following table

evolute involute 2ndinvolute 3rdinvolute 4thinvolute 5thinvolute
1 di f f 2 di f f 3 di f f 5 di f f 8 di f f 5 + 8 di f f

→ tss
sst
sts

<
sst
sts

→ tss

<
sst
sts

→ tss

<
sst
sts

<
sst
sts

→ tss

<
sst
sts

<
sst
sts

→ tss

<
sst

sts
→ tss

→
sst
sts

→ tss

<
sst

sts
→ tss

sst
sts

<
sst
sts

...
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Definition 2.3. In mathematics, the Fibonacci numbers are the numbers in the following integer sequence, called the
Fibonacci sequence, and characterized by the fact that every number after the first two is the sum of the two preceding
ones:

{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...} (24)

Theorem 2.4. The number of the different type the casual characteristics of n th order involute of a spacelike curve
timelike normal can be given using Fibonacci numbers.

Proof. In each step for tss and sst, there are two options, but for sts there is only one form so we can write the numbers
of the forms by one by as in the following way

1
1

2 = 2.1 + 0.1
2 + 1 = 2.1 + 1.1

2 + 1 + 2 = 2.2 + 1.1
2 + 1 + 2 + 2 + 1 = 2.3 + 2.1

2 + 1 + 2 + 2 + 2 + 2 + 1 = 2.5 + 2.1

so we can write the following sequence

a0 = 1
a1 = 1 = 2.0 + 1.1
a2 = 2 = 2.1 + 0.1
a3 = 3 = 2.1 + 1.1 = 2.a1 + a0.1
a4 = 5 = 2.2 + 1.1 = 2.a2 + a1.1
a5 = 8 = 2.3 + 2.1 = 2.a3 + a2.1
a6 = 13 = 2.5 + 3.1 = 2.a4 + a3.1
a7 = 21 = 2.8 + 5.1 = 2.a5 + a4.1

an = 2.an−2 + an−3.1

with so its general term is
an = 2.an−2 + an−3.1, n ≥ 3. (25)

Hence
an+1 = 2.an−1 + an−2.1 (26)

and if we write and add the first two terms

an = 2.an−2 + an−3.1,
an−1 = 2.an−3 + an−4.1

we find

an + an−1 = 2.an−2 + an−3.1 + 2.an−3 + an−4.1
= 2.an−2 + 2.an−3 + an−3.1 + an−4.1
= 2 (an−2 + an−3) + (an−3 + an−4)
= 2an−1 + an−2

= an+1.
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When we calculate the number of the different forms we find the Fibonacci numbers. This complete the proof.

The casual characteristics of higher order Mannheim partner of a non null Mannheim curve in IL3 can be
given as in the following table. For a non-null Mannheim curve there are the following forms;

Theorem 2.5. The the casual characteristics of n th order Mannheim partner of a spacelike curve with timelike
normal can be given as in the following table, in IL3.

Mann.
curve

Mann.
part. 2nd Mann.

part. 3rd Mann.
part. 4th Mann.

part. 5th Mann.
part. 6th Mann.

part.
1 di f 1 di f 2 di f 3 di f 2 + 3 di f 3 + 5 di f f 5 + 8 di f

sts→ sst <
tss <
sts→

tss <
sts→
sst <

tss <
sts→
sst <
tss <
sts→

tss <
sts→
sst <
tss <
sts→
tss <
sts→
sst <

tss <
sts→
sst <
tss <
sts→
tss <
sts→
sst <
tss <
sts→
sst <
tss <
sts→

... (27)

Proof. For a spacelike Mannheim curve with timelike normal N, binormal B is spacelike , that is{
T spacelike N timelike B spacelike

s t s

}
(28)

since N = BM (timelike) and < N,TM >= 0, hence BM must be timelike.Hence it is trivial that tangent TM and
normal NM must be spacelike {

TM spacelike NM spacelike BM timelike
s s t

}
(29)

hence we have
Mann. curve Mann. partner

sts sst (30)

For a spacelike Mannheim curve with timelike binormal B, normal N and tangent T are spacelike ,{
T spacelike N timelike B spacelike

s s t

}
(31)

since N = BM
(
spacelike

)
and < N,TM >= 0, hence BM must be spacelike.Hence it is trivial that tangent TM or

normal NM must be spacelike, that is; it is trivial that; a spacelike Mannheim curve with timelike binormal B
has Mannheim partner with always spacelike binormal vector BM.Mannheim partner is timelike or spacelike.

Tan1ent TM Normal NM Binormal BM
s
t

t
s

s
s

. (32)
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Hence the casual characteristics of have the following two forms

Mann. curve Mann. partner

sst <
sts
tss

(33)

For a timelike Mannheim curve with timelike tangent vector T, normal vector N and binormal vector B are
spacelike, lets use the following table{

T timelike N spacelike B spacelike
t s s

}
(34)

We know that for Mannheim pairs N = BM
(
spacelike

)
and < N,TM >= 0, hence it is trivial that; a timelike

curve has spacelike or time like Mannheim partner with always spacelike binormal vector BM,
Tan1ent TM Normal NM Binormal BM

s
t

t
s

s
s

 (35)

The casual characteristics of timelike Mannheim curve and Mannheim partner have the following two forms

Mann.curve Mann.partner

tss <
tss
sts

(36)

The casual characteristics of Second order Mannheim partner of spacelike Mannheim curve with timelike
normal N, is a spacelike curve with timelike binormal or spacelike binormal. It is trivial that

Mann. curve Mann.part 2nd order Mann.part

sts→ sst <
tss
sts

(37)

from the 30, 33 and 36. If we go on, we have the table with casual characteristics of higher order Mannheim
partner of a spacelike curve with timelike normal, as a result, we have the proof.

Corollary 2.6. The casual characteristics of higher order Mannheim partner of a timelike Mannheim curve has the
following table

Mann.
curve

Mann.
part.

2nd Mann.
part.

3th Mann.
part.

4th Mann.
part.

2 di f . 3 di f . 5 di f . 8 di f .

tss <
tss <
sts→

tss <
sts→
sst <

tss <
sts→
sst <
tss <
sts→

tss <
sts→
sst <
tss <
sts→
tss <
sts→
sst <

... (38)

Theorem 2.7. The number of the different type the casual characteristics of n th order Mannheim partner of a
spacelike curve with timelike normal can be given using Fibonacci numbers.

Proof. In each step for forms sts and sst, there are two options, but for the form tss there is only one form so we can
write the numbers of the forms by one by as similiar in the theorem 2.2 using Fibonacci numbers.
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2.1. The casual characteristics of higher order Bertrand mate
The casual characteristics of higher order Bertrand mate of a non-null Bertrand curve in IL3 can be given

as in the following table. For a non-null Bertrand mate of non-null Bertrand curves there are the following
forms;

Theorem 2.8. The number of the nth order Bertrand mate with different type of casual characteristics of a spacelike
Bertrand curve with timelike binormal and a timelike Bertrand curve is given as 2n, also the nth order Bertrand mate
of a spacelike Bertrand curve with timelike principal normal is always spacelike curve with timelike principal normal.

timelike
Bert. curve

Bert.
mate

2nd Bert.
mate

3rdBert.
mate

4thBert.
mate ..

nthBert.
mate

1 di f f erent
2 di f f erent
= 22

4 di f f erent
= 22

8 di f f erent
= 23

16
di f f erent .. 2ndi f f erent

tss <
sst
tss

<
sst
tss

<
sst
tss

<
sst
tss

<
sst
tss

<
sst
tss

<
sst
tss

<
sst
tss

<
sst
tss

<
sst
tss

<
sst
tss

<
sst
tss

<
sst
tss

<
sst
tss

<
sst
tss

(39)

spacelike
Bert. curve

with
timelike normal

Bert mate 2nd Bert
mate

3rdBert
mate

4thBert
mate

nthBer
mate

sts → sts → sts → sts → sts → sts

Proof. If α isa timelike Bertrand curve, it has timelike tangent vector T,and normal N and binormal B are
spacelike . {

T timelike N spacelike B spacelike
t s s

}
(40)

Also since N = NB, NB is spacelike hence normal NB and binormal BB can be timelike or spacelike. and
N = NB, ⟨TB,N⟩ = 0. Hence 

Tan1ent TB Normal NB Binormal BB
s
t

s
s

t
s

 (41)

are the forms of the casual characteristics of Bertrand mate. The Bertrand mate of a timelike Bertrand curve
is either spacelike curve with timelike binormal or timelike curve, and we will show this result as in the
following way;

Bertrand Bertrand mate

tss <
sst
tss

(42)
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For a spacelike Bertrand curve with timelike binormal vector as in{
T spacelike N spacelike B timelike

s s t

}
(43)

it is trivial that a spacelike curve has spacelike tangent vector T , with timelike binormal B and is spacelike
normal N, since N = NB , normal NB is always spacelike,and

N = NB, ⟨TB,N⟩ = 0 (44)

hence and Binormal can be timelike or spacelike, it is trivial
Tan1ent TB Normal NB Binormal BB

s
t

s
s

t
s

 (45)

Hence the Bertrand mate of a spacelike Bertrand curve with timelike binormal vector B, is either timelike curve
or spacelike curve with timelike binormal. They have following casual charastics;

Bertrand Bertrand mate

sst <
sst
tss

(46)

For a spacelike Bertrand curve with timelike normal as in{
T spacelike N timelike B spacelike

s t s

}
(47)

Bertrand mate of a spacelike Bertrand curve with timelike normal N curve since and N = NB, ⟨TB,N⟩ = 0
and Normal NB is always timelike, also TB is spacelike, hence Bertrand mate is spacelike , we have{

TB spacelike NB timelike BB spacelike
s t s

}
(48)

Bertrand mate of a spacelike Bertrand curve with timelike normal vector is always spacelike curve with timelike
normal as in following casual charastics;

Bertrand curve Bertrand mate
sts → sts (49)

Using the 42, 46 and 49, we have the following table

timelike Bert. curve Bert. mate

tss <
sst
sts

spacelike Bert. curve
timelike binormal

sst
<

sst
sts

spacelike Bert. curve
timelike normal Bert. mate

sts sts

(50)
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The casual characteristics of second order Bertrand mate of a non− null Bertrand curve is trivial from the 42,
46 and 49

timelike
Bert. curve

Bert. mate
2 different

2nd Bert. mate
4 different

tss <
sst
sts <

sst <
ss
tss

tss <
sst
tss

spacelike
Bert. curve

timelike binormal
sst

sst
sts <

sst <
sst
tss

tss <
sst
tss

spacelike
Bert. curve

timelike normal
1 Bert. mate 1 Bert. mate

sts sts sts

(51)
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