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Abstract. Some novel estimations for Chebyshev type inequalities have been presented via generalized
proportional fractional integral operators for integrable functions. The results are more general estimations
by using the expansion of exponential function.

1. Introduction

Integral inequalities, a branch of mathematical analysis, play a crucial role in extending the princi-
ples of classical inequalities to functions involving integrals. These inequalities offer powerful tools for
analyzing and bounding the behavior of integral expressions, providing insights into the properties of func-
tions and their relationships. Their importance extends across various mathematical disciplines, making
them indispensable in fields such as analysis, differential equations, optimization, and applied mathe-
matics. Integral inequalities involve the study of relationships between integrals of functions and their
corresponding bounds. They provide a framework for comparing the size of integrals and offer valu-
able information about the behavior of functions over intervals. Some well-known integral inequalities
include the Cauchy-Schwarz inequality, Chebyshev inequality, Grüss inequality, Hölder’s inequality, and
Minkowski’s inequality, each serving specific purposes in mathematical analysis. Integral inequalities have
practical significance in numerical analysis, where they are employed in the development and analysis
of numerical methods. They help establish error estimates and convergence rates, guiding the design of
efficient algorithms for approximating solutions to mathematical problems.
We will start with the expression of an inequality that has come to the fore with its applications and is the
subject of many articles. Chebyshev inequality was given by Čebyšev in [12] as follows.

|T (Ψ,Φ)| ≤
1
12

(κ2 − κ1)2
∥Ψ′∥∞ ∥Φ

′
∥∞ , (1)
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Inequalities via Generalized Proportional Fractional Integral Operators, Turkish Journal of Science, 8(3), 114-123.



S.I. Butt, A.O. Akdemir, E. Gül, M. Nadeem and A. Yalçın / TJOS 8 (3), 114–123 115

whereΨ,Φ : [κ2, κ1]→ R are absolutely continuous functions whose derivativesΨ′,Φ′ ∈ L∞ [κ2, κ1] and

T (Ψ,Φ) =
1

κ2 − κ1

κ2∫
κ1

Ψ (x)Φ (x) dx −

 1
κ2 − κ1

κ2∫
κ1

Ψ (x) dx


 1
κ2 − κ1

κ2∫
κ1

Φ (x) dx

 , (2)

which is called the Chebyshev functional, provided the integrals in (2) exist. With the help of this famous
functional, numerous new integral inequalities have been proved and several variants of Chebyshev’s
inequality have been established. Various generalizations, refinements and extensions can be found in
[12]-[27].
Fractional calculus, a branch of mathematical analysis that extends the traditional concepts of differentiation
and integration to non-integer orders, has gained increasing importance in various scientific and engineering
disciplines. Initially introduced in the 17th century by mathematicians like Leibniz and Euler, fractional
calculus has evolved into a powerful tool with applications in physics, engineering, biology, finance,
and more. Its unique ability to capture non-local and memory-dependent phenomena makes it a crucial
framework for understanding complex systems. Classical calculus deals with integer-order derivatives and
integrals, representing the rate of change and accumulation of quantities, respectively. In fractional calculus,
these operations are extended to non-integer orders, introducing fractional derivatives and integrals. The
fractional derivative of a function describes its rate of change with respect to a non-integer order, providing
a deeper insight into intricate behaviors that classical calculus may overlook. The importance of fractional
calculus lies in its ability to bridge the gap between classical calculus and the real-world complexities
of dynamic systems. As technology advances and our understanding of intricate phenomena deepens,
fractional calculus continues to find new applications and challenges. Researchers are exploring its potential
in artificial intelligence, machine learning, and data science, highlighting its adaptability to diverse domains.
For various results and properties of fractional integral and derivative operators, we refer the papers [1]-
[11] for interested readers. Due to the intensive work on it, the Riemann-Liouville integral operator is a
prominent operator and is defined as follows.

Definition 1.1. (See [1]) LetΨ ∈ L1[κ2, κ1]. The Riemann-Liouville integrals Jακ1+
Ψ and Jακ2−

Ψ of order α > 0 with
κ1 ≥ 0 are defined by

Jακ1+Ψ(t) =
1
Γ(α)

∫ t

κ1

(t − x)α−1Ψ(x)dx, t > κ1

and

Jακ2−
Ψ(t) =

1
Γ(α)

∫ κ2

t
(x − t)α−1Ψ(x)dx, t < κ2

respectively. Here Γ(t) is the Gamma function and its definition is Γ(t) =
∫
∞

0 e−ttx−1dx. It is to be noted that
J0
κ1+
Ψ(t) = J0

κ2−
Ψ(t) = Ψ(t) in the case of α = 1, the fractional integral reduces to the classical integral.

We will continue with the generalized proportional fractional integral operator, which has been de-
scribed recently and has been the main source of motivation for many studies in the literature with its
use in many areas, especially inequality theory. In [5], Jarad et al. identified the proportional generalized
fractional integrals that satisfy many important features as follows:

Definition 1.2. The left and right generalized proportional fractional integral operators are respectively defined by

κ1+J
α,λΨ(t) =

1
λαΓ(α)

∫ t

κ1

e[ λ−1
λ (t−x)](t − x)α−1Ψ(x)dx, t > κ1

and

κ2−J
αΨ(t) =

1
λαΓ(α)

∫ κ2

t
e[ λ−1

λ (x−t)](x − t)α−1Ψ(x)dx, t < κ2

where λ ∈ (0, 1] and α ∈ C and R(α) > 0.
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In [17], Belarbi and Dahmani established following theorems related to the Chebyshev inequalities
involving Riemann-Liouville fractional integral operator.

Theorem 1.3. (See [17]) LetΨ and Φ be two synchronous functions on [0,∞). Then for all t > 0, α > 0, we have:

Jα(ΨΦ) ≥
Γ(α + 1)

tα
JαΨ(t)JαΦ(t). (3)

Theorem 1.4. (See [17]) LetΨ and Φ be two synchronous functions on [0,∞). Then for all t > 0, α > 0, β > 0, we
have:

tα

Γ(α + 1)
Jβ(ΨΦ)(t) +

tβ

Γ(β + 1)
Jα(ΨΦ)(t) ≥ JαΨ(t)JβΦ(t) + JβΨ(t)JαΦ(t). (4)

Theorem 1.5. (See [17]) Let (Ψi)i=1,...,n be n positive increasing functions on [0,∞). Then for any t > 0, α > 0, we
have

Jα
 n∏

i=1

Ψi

 (t) ≥ (Jα(1))1−n
n∏

i=1

JαΨi(t). (5)

Theorem 1.6. (See [17]) LetΨ andΦ be two functions defined on [0,∞), such thatΨ is increasing,Φ is differentiable
and there exist a real number m := inft≥0Φ(t)′. Then the inequality

Jα(ΨΦ)(t) ≥ (Jα(1))−1 JαΨ(t)JαΦ(t) −
mt
α + 1

JαΨ(t) +mJα(tΨ(t)) (6)

is valid for all t > 0, α > 0.

The following Theorems have been proved by Set et al. and they include some new inequalities of
Chebyshev type via conformable and generalized fractional integral operators.

Theorem 1.7. (See [24]) LetΨ and Φ be two integrable functions which are synchronous on [0,∞). Then

xατ

Γ(τ + 1)ατ
( βJαΨΦ)(x) +

xαβ

Γ(β + 1)αβ
( τJαΨΦ)(x)

≥ ( βJαΨ)(x)( τJαΦ)(x) + ( τJαΨ)(x)( βJαΦ)(x) (7)

where α, β, τ > 0 and Γ is Euler Gamma function.

Theorem 1.8. (See [26]) Let t be a positive function on [0,∞] and let Ψ and Φ be two differentiable functions on
[0,∞]. If Ψ′ ∈ Lr([0,∞]), Φ′ ∈ Ls([0,∞]), r > 1, r−1 + s−1 = 1, then for all x > 0, α > 0, β > 0, λ > 0, θ > 0, we
have ∣∣∣∣(ϵω,δ,q,r,c0+,α,β,σt)(x; p)(ϵω,δ,q,r,c0+,λ,θ,ptΨΦ)(x; p) + (ϵω,δ,q,r,c0+,λ,θ,pt)(x; p)(ϵω,δ,q,r,c0+,α,β,σtΨΦ)(x; p)

− (ϵω,δ,q,r,c0+,α,β,σtΨ)(x; p)(ϵω,δ,q,r,c0+,λ,θ,ptΦ)(x; p) − (ϵω,δ,q,r,c0+,λ,θ,ptΨ)(x; p)(ϵω,δ,q,r,c0+,α,β,σtΦ)(x; p)
∣∣∣∣

≤ ||Ψ′||r||Φ
′
||s

∫ x

0

∫ x

0
(x − τ)(β−1)(x − ρ)(θ−1)

|τ − ρ|t(τ)t(ρ)

× Eω,δ,q,r,c0+,α,β,σ

(
ω(x − τ)α; p

)
Eω,δ,q,r,c0+,λ,θ,p

(
ω(x − ρ)λ; p

)
dτdρ

≤ ||Ψ′||r||Φ
′
||sx(ϵω,δ,q,r,c0+,α,β,σt)(x; p)(ϵω,δ,q,r,c0+,λ,θ,pt)(x; p)

(8)

The main purpose of this paper is to establish several Chebyshev type inequalities by using the gen-
eralized proportional fractional integral operators. The results have been performed by a different way
comparing to the previous studies via using the expansion of exponential function in Taylor sense.
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2. Main Results

Theorem 2.1. Let Ψ,Φ : [0,∞) → R be two integrable functions which are synchronous on [0,∞) . For α, β > 0,
0 < ρ1 ≤ 1, then one has the following inequality:

1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1
×

GPF
κ1

Iα,ρ1 (ΨΦ) (κ2) ≥GPF
κ1

Iα,ρ1Ψ (κ2) +GPF
κ1

Iα,ρ1Φ (κ2) (9)

where
1

ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1
=

1
ρα1Γ (α)

∫ κ2

κ1

ea1(κ2−u) (κ2 − u)α−1 du

and a1 =
ρ1−1
ρ1
.

Proof. SinceΨ and Φ are synchronous functions on [0,∞) , it can be written

(Ψ (u) −Ψ (v)) (Φ (u) −Φ (v)) ≥ 0, u, v ∈ [0,∞) (10)

or equivalently,
Ψ (u)Φ (u) +Ψ (v)Φ (v) ≥ Ψ (u)Φ (v) +Ψ (v)Φ (u) . (11)

If we product both sides of (11) by 1
ρ1Γ(α) e

ρ1−1
ρ1

(κ2−u) (κ2 − u)α−1 , it yields

1
ρ1Γ (α)

e
ρ1−1
ρ1

(κ2−u) (κ2 − u)α−1Ψ (u)Φ (u) +
1

ρ1Γ (α)
e
ρ1−1
ρ1

(κ2−u) (κ2 − u)α−1Ψ (v)Φ (v)

≥
1

ρ1Γ (α)
e
ρ1−1
ρ1

(κ2−u) (κ2 − u)α−1Ψ (u)Φ (v) +
1

ρ1Γ (α)
e
ρ1−1
ρ1

(κ2−u) (κ2 − u)α−1Ψ (v)Φ (u) .

Integrating both sides of the above equality with respect to u over [κ2, κ1] ,we get

1
ρ1Γ (α)

∫ κ2

κ1

e
ρ1−1
ρ1

(κ2−u) (κ2 − u)α−1Ψ (u)Φ (u) du

+Ψ (v)Φ (v)
1

ρ1Γ (α)

∫ κ2

κ1

e
ρ1−1
ρ1

(κ2−u) (κ2 − u)α−1 du

≥ Φ (v)
1

ρ1Γ (α)

∫ κ2

κ1

e
ρ1−1
ρ1

(κ2−u) (κ2 − u)α−1Ψ (u) du

+Ψ (v)
1

ρ1Γ (α)

∫ κ2

κ1

e
ρ1−1
ρ1

(κ2−u) (κ2 − u)α−1Φ (u) .

Let a1 =
ρ1−1
ρ1
. By using the facts that

ea1(κ2−u) =

∞∑
k1=0

(a1 (κ2 − u))k1

k1!
,

1
ρα1Γ (α)

∫ κ2

κ1

ea1(κ2−u) (κ2 − u)α−1 du =
1

ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1
.

We can conclude that

GPF
κ1

Iα,ρ1 (ΨΦ) (κ2) +Ψ (v)Φ (v)
1

ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1
(12)

≥ Φ (v)GPF
κ1

Iα,ρ1Ψ (κ2) +Ψ (v)GPF
κ1

Iα,ρ1 (Φ) (κ2) .
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If we proceed a similar argument, by multiplying the above inequality by 1
ρα1Γ(α) e

ρ1−1
ρ1

(κ2−v) (κ2 − v)α−1 and
integrating with respect to v over [κ2, κ1] ,we obtain

GPF
κ1

Iα,ρ1 (ΨΦ) (κ2)
1

ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1

+
1

ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1

1
ρα1Γ (α)

κ2∫
κ1

e
ρ1−1
ρ1

(κ2−v) (κ2 − v)α−1Ψ (v)Φ (v) dv

≥
GPF
κ1

Iα,ρ1 (Ψ) (κ2)
1

ρα1Γ (α)

κ2∫
κ1

e
ρ1−1
ρ1

(κ2−v) (κ2 − v)α−1Φ (v) dv

+GPF
κ1

Iα,ρ1 (Φ) (κ2)
1

ρα1Γ (α)

κ2∫
κ1

e
ρ1−1
ρ1

(κ2−v) (κ2 − v)α−1Ψ (v) dv.

By computing the above integrals, one can see that

GPF
κ1

Iα,ρ1 (ΨΦ) (κ2)
1

ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1
≥

GPF
κ1

Iα,ρ1Ψ (κ2) +GPF
κ1

Iα,ρ1Φ (κ2) .

Which completes the proof.

Remark 2.2. Similar calculations as above shows that for anyΨ,Φ which synchronous functions on [0,∞), one can
obtain

GPFIα,ρ1
κ2

(ΨΦ) (κ1)
1

ραΓ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1
≥

GPF Iα,ρ1
κ2
Ψ (κ1) +GPF Iα,ρ1

κ2
Φ (κ1) .

Theorem 2.3. LetΨ,Φ : [0,∞)→ R be two integrable functions which are synchronous on [0,∞) . For all α, β > 0,
0 < ρ1 ≤ 1, 0 < ρ2 ≤ 1, one has the following inequality:

1

ρ
β
2Γ (α)

∞∑
k2=0

ak2
2

k2!
(κ2 − κ1)α+k2

β + k2
×

GPF
κ1

Iα,ρ1 (ΨΦ) (κ2) (13)

+
1

ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1
×

GPF
κ1

Iβ,ρ2 (ΨΦ) (κ2)

≥
GPF
κ1

Iα,ρ1Ψ (κ2)GPF
κ1

Iβ,ρ2Φ (κ2) +GPF
κ1

Iα,ρ1Φ (κ2)GPF
κ1

Iβ,ρ2Ψ (κ2)

where

1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1
=

1
ρα1Γ (α)

∫ κ2

κ1

ea1(κ2−u) (κ2 − u)α−1 du, a1 =
ρ1 − 1
ρ1

and

1

ρ
β
2Γ (α)

∞∑
k2=0

ak2
2

k2!
(κ2 − κ1)α+k2

β + k2
=

1

ρ
β
2Γ (α)

∫ κ2

κ1

ea2(κ2−v) (κ2 − v)α−1 dv, a2 =
ρ2 − 1
ρ2
.
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Proof. We will start by multiplying both sides of (12) by 1
ρ
β
2Γ(α)

ea2(κ2−v) (κ2 − v)α−1 , then we can write

GPF
κ1

Iα,ρ1 (ΨΦ) (κ2) ×
1

ρ
β
2Γ (α)

ea2(κ2−v) (κ2 − v)α−1

+
1

ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1
×

1

ρ
β
2Γ (α)

ea2(κ2−v) (κ2 − v)α−1Ψ (v)Φ (v)

≥
GPF
κ1

Iα,ρ1Ψ (κ2) ×
1

ρ
β
2Γ (α)

ea2(κ2−v) (κ2 − v)α−1Φ (v)

+GPF
κ1

Iα,ρ1Φ (κ2) ×
1

ρ
β
2Γ (α)

ea2(κ2−v) (κ2 − v)α−1Ψ (v) .

Integrating both sides of the above equality with respect to v over [κ2, κ1] ,we get the desired result.

Remark 2.4. If we set

1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1
=

1

ρ
β
2Γ (α)

∞∑
k2=0

ak2
2

k2!
(κ2 − κ1)α+k2

β + k2
,

then one can obtain the inequality (9).

Theorem 2.5. Let Ψi : [0,∞) → R be positive increasing and integrable functions on [0,∞) for i = 1, 2, ...,n. For
α > 0, 0 < ρ1 ≤ 1, then one has the following inequality:

 1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1


n−1

×

GPF
κ1

Iα,ρ1

 n∏
i=1

Ψi

 (κ2)

 ≥
 n∏

i=1

(
GPF
κ1

Iα,ρ1Ψi (κ2)
) (14)

where a1 =
ρ1−1
ρ1
.

Proof. To prove this inequality, we will use induction on n ∈ N. For n = 1, it is obvious that the inequality
(14) holds such as

GPF
κ1

Iα,ρ1Ψ1 (κ2) ≥
(

GPF
κ1

Iα,ρ1Ψ1 (κ2)
)
,∀α > 0.

By using the induction hypothesis, we can assume that

GPF
κ1

Iα,ρ1

n−1∏
i=1

Ψi

 (κ2) ≥

 1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1


n−1∏

i=1

(
GPF
κ1

Iα,ρ1Ψi (κ2)
) ,

where ∀α, κ2 > 0.
Since Ψi : [0,∞) → R are positive increasing and integrable functions on [0,∞) for i = 1, 2, ...,n, then
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n−1∏
i=1
Ψi

)
(κ2) is an increasing function. Therefore, we can apply inequality (9) for

n−1∏
i=1
Ψi = Φ,Ψn = Ψ,we get

GPF
κ1

Iα,ρ1

n−1∏
i=1

Ψi

 (κ2) ≥

n−1∏
i=1

(
GPF
κ1

Iα,ρ1ΨiΨn

)
(κ2)

 ≥GPF
κ1

Iα,ρ1 (ΨΦ) (κ2)

≥

 1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1


−1

×
GPF
κ1

Iα,ρ1Φ (κ2)GPF
κ1

Iα,ρ1Ψ (κ2)

≥

 1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1


−1

×

 1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1


2−n n−1∏

i=1

(
GPF
κ1

Iα,ρ1Ψi (κ2)
)GPF

κ1
Iα,ρ1Ψn

≥

 1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1


1−n n∏

i=1

(
GPF
κ1

Iα,ρ1Ψi (κ2)
)
.

This completes the proof.

Theorem 2.6. Let Ψ,Φ : [0,∞) → R be two integrable functions on [0,∞) such that Ψ is increasing and Φ is
differentiable with m = inft∈[0,∞)Φ

′ (t) . Then one has the following inequality:

GPF
κ1

Iα,ρ1 (ΨΦ) (κ2)

≥

 1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1


−1

×
GPF
κ1

Iα,ρ1Ψ (κ2) +GPF
κ1

Iα,ρ1Φ (κ2)

−
m

1
ρα1Γ(α)

∑
∞

k1=0
ak1

1
k1!

(κ2−κ1)α+k1

α+k1

×
GPF
κ1

Iα,ρ1Ψ (κ2)GPF
κ1

Iα,ρ1 t (κ2) +mGPF
κ1

Iα,ρ1 (tΨ) (κ2)

where t (x) = x.

Proof. Suppose that p (x) = mx and h (x) = Φ (x)−p (x) .Note that h is differentiable and increasing on [0,∞) ,
then we can apply (9) as

GPF
κ1

Iα,ρ1 (Ψh) (κ2) (15)

≥

 1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1


−1

×
GPF
κ1

Iα,ρ1Ψ (κ2) +GPF
κ1

Iα,ρ1 h (κ2)

=

 1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1


−1

×
GPF
κ1

Iα,ρ1Ψ (κ2) +GPF
κ1

Iα,ρ1 h (κ2)

−

 1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1


−1

×
GPF
κ1

Iα,ρ1Ψ (κ2) +mGPF
κ1

Iα,ρ1 p (κ2) .

Since,
GPF
κ1

Iα,ρ1 p (κ2) = mGPF
κ1

Iα,ρ1 t (κ2)

and
GPF
κ1

Iα,ρ1
(
Ψp

)
(κ2) = mGPF

κ1
Iα,ρ1 (tΨ) (κ2) .
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Then, the inequality (15) implies,

GPF
κ1

Iα,ρ1 (ΨΦ) (κ2)

= GPF
κ1

Iα,ρ1 (Ψh) (κ2) +GPF
κ1

Iα,ρ1
(
Ψp

)
(κ2)

≥

 1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1

 ×GPF
κ1

Iα,ρ1Ψ (κ2)GPF
κ1

Iα,ρ1Φ (κ2)

−

 1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1


−1

×
GPF
κ1

Iα,ρ1Ψ (κ2)GPF
κ1

Iα,ρ1 p (κ2) + ×GPF
κ1

Iα,ρ1Ψ (κ2)GPF
κ1

Iα,ρ1
(
Ψp

)
(κ2)

≥

 1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1

 ×GPF
κ1

Iα,ρ1Ψ (κ2)GPF
κ1

Iα,ρ1Φ (κ2)

−
m

1
ρα1Γ(α)

∑
∞

k1=0
ak1

1
k1!

(κ2−κ1)α+k1

α+k1

×
GPF
κ1

Iα,ρ1Ψ (κ2)GPF
κ1

Iα,ρ1 t (κ2) +mGPF
κ1

Iα,ρ1 (tΨ) (κ2) ,

which is the desired result.

Theorem 2.7. Let Ψ,Φ : [0,∞) → R be two integrable functions on [0,∞) such that Ψ and Φ are differentiable
with m1 = inft∈[0,∞)Ψ

′ (t) and m2 = inft∈[0,∞)Φ
′ (t) . Then one has the following inequality:

GPF
κ1

Iα,ρ1 (ΨΦ) (κ2)

≥

 1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1

 ×GPF
κ1

Iα,ρ1Ψ (κ2) +GPF
κ1

Iα,ρ1Φ (κ2)

−
m2

1
ρα1Γ(α)

∑
∞

k1=0
ak1

1
k1!

(κ2−κ1)α+k1

α+k1

×
GPF
κ1

Iα,ρ1Ψ (κ2)GPF
κ1

Iα,ρ1 t (κ2)

−
m1

1
ρα1Γ(α)

∑
∞

k1=0
ak1

1
k1!

(κ2−κ1)α+k1

α+k1

×
GPF
κ1

Iα,ρ1Φ (κ2)GPF
κ1

Iα,ρ1 t (κ2)

+
m1m2

1
ρα1Γ(α)

∑
∞

k1=0
ak1

1
k1!

(κ2−κ1)α+k1

α+k1

×
GPF
κ1

Iα,ρ1 t (κ2)GPF
κ1

Iα,ρ1 t (κ2)

+m2 ×
GPF
κ1

Iα,ρ1 (tΨ) (κ2) +m1 ×
GPF
κ1

Iα,ρ1 (tΦ) (κ2) −m1m2 ×
GPF
κ1

Iα,ρ1 t2 (κ2)

where t (x) = x.

Proof. Assume that p1 (x) = m1x, h1 (x) = Φ (x)− p1 (x) and p2 (x) = m2x, h2 (x) = Φ (x)− p2 (x) . Since h1, h2 are
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differentiable and increasing on [0,∞) , then we can apply (9) such that

GPF
κ1

Iα,ρ1 (h1h2) (κ2) (16)

≥

 1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1


−1

×
GPF
κ1

Iα,ρ1 h1 (κ2) +GPF
κ1

Iα,ρ1 h2 (κ2)

≥

 1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1


−1

×

(
GPF
κ1

Iα,ρ1Ψ (κ2) +GPF
κ1

Iα,ρ1 p1 (κ2)
) (

GPF
κ1

Iα,ρ1Φ (κ2) +GPF
κ1

Iα,ρ1 p2 (κ2)
)

≥

 1
ρα1Γ (α)

∞∑
k1=0

ak1
1

k1!
(κ2 − κ1)α+k1

α + k1


−1

×
GPF
κ1

Iα,ρ1Ψ (κ2)GPF
κ1

Iα,ρ1Φ (κ2)

−
m2

1
ρα1Γ(α)

∑
∞

k1=0
ak1

1
k1!

(κ2−κ1)α+k1

α+k1

×
GPF
κ1

Iα,ρ1Ψ (κ2)GPF
κ1

Iα,ρ1 t (κ2)

−
m1

1
ρα1Γ(α)

∑
∞

k1=0
ak1

1
k1!

(κ2−κ1)α+k1

α+k1

×
GPF
κ1

Iα,ρ1Φ (κ2)GPF
κ1

Iα,ρ1 t (κ2)

+
m1m2

1
ρα1Γ(α)

∑
∞

k1=0
ak1

1
k1!

(κ2−κ1)α+k1

α+k1

×
GPF
κ1

Iα,ρ1 t (κ2)GPF
κ1

Iα,ρ1 t (κ2) .

Moreover,

GPF
κ1

Iα,ρ1
(
h1p2

)
(κ2) = m2 ×

GPF
κ1

Iα,ρ1 (th1) (κ2)

= m2 ×
GPF
κ1

Iα,ρ1 (tΨ) (κ2) −m1m2 ×
GPF
κ1

Iα,ρ1 t2 (κ2) . (17)

Similarly, we have

GPF
κ1

Iα,ρ1
(
h2p1

)
(κ2) = m1 ×

GPF
κ1

Iα,ρ1 (th1) (κ2)

= m1 ×
GPF
κ1

Iα,ρ1 (tΦ) (κ2) −m1m2 ×
GPF
κ1

Iα,ρ1 t2 (κ2)

and
GPF
κ1

Iα,ρ1
(
p1p2

)
(κ2) = m1m2 ×

GPF
κ1

Iα,ρ1 t2 (κ2) .

By using the fact that,
ΨΦ =

(
h1 + p1

) (
h2 + p2

)
= h1h2 + h1p2 + h2p1 + p1p2.

Then, we can obtain

GPF
κ1

Iα,ρ1 (ΨΦ) (κ2)

= GPF
κ1

Iα,ρ1 (h1h2) (κ2) +GPF
κ1

Iα,ρ1
(
h1p2

)
(κ2)

+GPF
κ1

Iα,ρ1
(
h2p1

)
(κ2) +GPF

κ1
Iα,ρ1

(
p1p2

)
(κ2) .

By taking into account this equality together with (16) and (17) ,we conclude the desired result.

3. Conclusion

Fractional calculus has evolved from a historical curiosity to a fundamental tool in modern mathematics
and science. Its applications across various disciplines emphasize its significance in providing more accurate
and comprehensive models for complex systems. As research in this field progresses, fractional calculus is
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likely to play an increasingly vital role in advancing our understanding of the intricate dynamics inherent
in the natural and engineered world. Several researchers have studied on Chebyshev functional in the
literature by different motivations. The main purpose of these studies is to obtain optimal bounds and
approaches by using concepts of fractional calculus. To provide new and more general bounds and
estimations, we have used generalized proportional fractional integral operators for integrable functions.
Our findings have been improved by using the expansion of exponential functions in Taylor sense.

References

[1] Podlubny, I. Fractional Differential Equations, Mathematics in Science and Enginering. 198, Academic Press, New York, London,
Tokyo and Toronto, 1999.

[2] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. North-Holland Mathematics
Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.

[3] Jarad F, Ugurlu E, Abdeljawad T, Baleanu D. On a new class of fractional operators. Adv Differ Equ 2017, 247 (2017)
doi:10.1186/s13662-017-1306-z.

[4] Dokuyucu MA and Dutta H. A fractional order model for Ebola Virus with the new Caputo fractional derivative without singular
kernel. Chaos, Solitons and Fractals Volume 134, May 2020.

[5] Jarad F, Abdeljawad T, Alzabut J. Generalized fractional derivatives generated by a class of local proportional derivatives. Eur.
Phys. J. Spec. Top. 226, 34573471 (2017). https://doi.org/10.1140/epjst/e2018-00021-7

[6] Dokuyucu MA. A fractional order alcoholism model via Caputo-Fabrizio derivative. AIMS Mathematics 5 (2), 781-797, 2020.
[7] Dokuyucu MA, Celik E, Bulut H, Baskonus HM. Cancer treatment model with the Caputo-Fabrizio fractional derivative. The

European Physical Journal Plus, 133 (2018), 92.
[8] Ekinci A and Ozdemir ME. Some New Integral Inequalities Via Riemann Liouville Integral Operators. Applied and Computational

Mathematics, 3 (2019), 288–295.
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