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Bivariate Pell and Bivariate Pell-Lucas Hybrinomials

Yasemin TASYURDU?

?Erzincan Binali Yildirim University, Faculty of Arts and Sciences, Department of Mathematics, Erzincan, Turkey

Abstract. In this paper, we define bivariate Pell and bivariate Pell-Lucas hybrinomials and derive their
recurrence relations. We obtain sequences of both the bivariate Pell hybrinomials and the bivariate Pell-
Lucas hybrinomials and provide Binet formulas that allow us to calculate the nth terms of these sequences.
Furthermore, we derive generating functions and matrix representations of these hybrinomials and establish
their various properties.

1. Introduction

Numbers and polynomials defined by recurrence relations have been extensively studied due to their
wide range of applications in modern science. Well-known examples include Fibonacci, Lucas, Pell and
Pell-Lucas numbers and their polynomial generalizations, which have been studied for their importance
in various fields such as mathematics, number theory, computer science and statistics. Many recurrence
sequences have been introduced as generalizations of the Fibonacci numbers, considering the initial terms,
the distances between terms in the recurrence relation, and the coefficients of the added terms. For instance,
Fibonacci numbers are defined by recurrence relation F,, = F;,_1 + F,_, for n > 2 with the initial terms Fy = 0,
Fi =1 and then, Pell numbers, P, = 2P, + P,_», n > 2 with Py = 0, P; = 1 are defined by adding only
the different coefficient to the recurrence relation and Pell-Lucas numbers, Q, = 2Q,,-1 + Q,—2, n > 2 with
Qo = 2, Q1 = 2 are defined by considering both the coefficients in the recurrence relation and the initial
terms differently [1, 2]. In [3-6], the basic structures and properties of the Pell and Pell-Lucas numbers and
their corresponding problem approaches and generalizations, are presented. In [7], a new generalization
of the Fibonacci numbers, which includes all the above generalizations and extends the definition of both
distance and coefficient with respect to each term in the recurrence relation, is defined as five-parameter
generalized Fibonacci numbers.

Various polynomials related to numbers defined by recurrence relations have been introduced as gener-
alizations of both numbers and polynomials [8-11]. Pell polynomials, which are the generalization of Pell
numbers by adding a variable x to the recurrence relation, are defined by the recurrence relation

P, (x) = 2xPy—1 (x) + P2 (x), P,(x)=0, P1(x)=1

and Pell-Lucas polynomials, which are the generalization of Pell-Lucas numbers by adding a variable x to
both the recurrence relation and the initial terms differently, are defined by the recurrence relation
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Qn () = 2¥Qu-1 (1) + Qua (x), Qn (%) =2, Q1 () = 2x
for n > 2 [12]. New generalizations of both the Pell and Pell-Lucas numbers and polynomials, called
bivariate Pell polynomials and bivariate Pell-Lucas polynomials, are introduced by using a new parameter
variable y in the recurrence relations of the Pell and Pell-Lucas polynomials, respectively. These polynomials
are defined by the recurrence relations

Py (x,y) = 2xyPu-1 (X, y) + yPu2 (x,y), Pu(x,y) =0, P1(x,y) =1 @)
and
Qu(xy) =220yQua (% ) + yQu2 (v y),  Qu(xy) =2, Qi (x,y) = 2xy 2)
for n > 2 where x,y # 0, y?x*> + y # 0, respectively. Obviously, for y = 1 we obtain the Pell and Pell-Lucas
polynomials and P, (x,1) = Py, (x), Q, (x,1) = Q, (x) where P, (x) is the nth Pell polynomial and Q,, (x) is the
nth Pell-Lucas polynomial, respectively. Also, for x = y = 1 we obtain the Pell and Pell-Lucas numbers
and P, (1,1) = P, Q,(1,1) = Q, where P, is the nth Pell number and Q, is the nth Pell-Lucas number,
respectively.
Binet formulas for the nth bivariate Pell polynomial and the nth bivariate Pell-Lucas polynomial are
given by
" (x,y) = p" (%, y)
o y) —pxy)

P, (X, y) = 3)

and

Qv y) = d"(xy)+p" (xy) 4

where o(x,y) = xy+ x*y> +y and p(x,y) = xy — /x>y + y are the roots of the quadratic equation
t2 — 2xyt — y = 0 of equations (1) and (2), respectively. Also, the roots o (x,y) and p (x, y) hold

o(x,y)+pxy) =2xy
o, y)plxy = -y

a(xy)—py) =222 +y.

In recent years, studies on the structures and properties of the bivariate Pell and bivariate Pell-Lucas
polynomials have been presented. In [13], these polynomials were examined and several identities and
sum formulas were derived using different matrices. In [14], a symmetric function was introduced to
derive a new generating function for the bivariate Pell-Lucas polynomials, and new symmetric functions
were developed to present interesting properties of these polynomials. In [15], some sums and connection
formulas with identities involving these polynomials were obtained.

In mathematical theories, in addition to numbers and polynomials defined by recurrence relations, there
are also classes of numbers and polynomials that arise from the combination of different algebraic structures.
One such class is hybrid numbers, a new non-commutative number system, represent a generalization of
complex, dual and hyperbolic numbers with applications in various fields of mathematics. In [16], the set of
hybrid numbers is introduced and denoted by KK, which contains complex, dual and hyperbolic numbers.
The set of hybrid numbers, K, is defined as

]K={a+bi+ce+dh:a,b,c,delR, i2=-1,6=0,h*=1, ih=—hi=£+i}.

Forz; =a+bi+ce+dh and z; = x + yi + ze + th are defined as

Equality: zi=zonlyifa=x,b=y,c=zd=t
Addition: zZi+z=@+x)+(b+y)i+(c+z)e+@d+1Hh
Subtraction: zn—zn=@-x)+b-yi+(c-2z)e+d-th

Multiplication: ~ z1zp = ax — by + dt + bz + cy + (ay + bx + bt — dy) i
+(az+cx +bt —dy +dz —ct) e+ (at + dx + cy — bz) h.
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The multiplication of a hybrid number z = a + bi + ce + dh by the real scalar k is defined as
kz = ka + kbi + kce + kdh.

In hybrid numbers, multiplication is associative but not commutative. Addition, on the other hand, is
both associative and commutative. The additive identity is represented by 0 = 0+ 0i + O + Oh. The additive
inverse of a hybrid number z = a + bi + ce + dh is —z = —a — bi — ce — dh. Therefore, the set (K; +) forms an
Abelian group. For more comprehensive understanding of hybrid numbers, readers can refer to [16]. The
multiplication table for the basis of hybrid numbers is as follows:

Table 1: The multiplication of hybrid units of K

e i £ h
1)1 i £ h
i i -1 1-h e+i
el e 1+h 0 —&
h|h -&-i i 1

In the following years, new generalizations of sequences of numbers and polynomials defined by recur-
rence relations using hybrid numbers have been introduced and called hybrid sequences. Specifically, in
[17-19], hybrid sequences of the Fibonacci, Lucas, Pell, Pell-Lucas and Horadam numbers, which were de-
fined by second-order recurrence relations, were presented. In [20], hybrid sequences of the Tribonacci and
Tribonacci-Lucas numbers, which were defined by third-order recurrence relations, were introduced. More-
over, the Binet formulas, generating functions, and various properties of these derived hybrid sequences
were obtained.

On the other hand, polynomial sequences defined by recurrence relations using hybrid numbers have
been considered, and their new generalizations have been introduced and called hybrinomial sequences.
Furthermore, the identies and formulas of these hybrinomial sequences, including the Binet formulas,
generating functions and various other properties, have been presented. In [21-24], hybrinomial sequences
of the Fibonacci, Lucas, Pell, generalized Fibonacci-Pell, Horadam polynomials, which were defined by
second-order recurrence relations, were presented. In particular, in [25], these obtained results were
generalized and introduced a new generalization of the Fibonacci type and the Lucas type hybrid numbers
and polynomials and called generalized Fibonacci hybrinomials. In [26], hybrinomial sequences of the
Tribonacci and Tribonacci-Lucas polynomials, which were defined by third-order recurrence relations,
were presented and derived these hybrinomials by the matrices.

The aim of this study is to extend hybrid numbers to the class of bivariate polynomials defined by
recurrence relations, and to present a new generalization of recurrence sequences by generalizing all
results for hybrid numbers and hybrinomials related to numbers and polynomials defined by recurrence
relations. Therefore, in this study, the bivariate Pell and bivariate Pell-Lucas hybrinomials are introduced
and the Binet formulas, generating functions and well-known properties such as Catalan’s identity, Cassini’s
identity, d’Ocagne’s identity, Honsberger’s identity are presented for these hybrinomials.

2. Bivariate Pell and Bivariate Pell-Lucas Hybrinomials

In this section, we introduce the definitions of the bivariate Pell and bivariate Pell-Lucas hybrinomials
using hybrid numbers and the bivariate Pell and bivariate Pell-Lucas polynomials. We derive the Binet
formulas and generating functions for both the bivariate Pell hybrinomials and the bivariate Pell-Lucas
hybrinomials. Moreover, we explore their matrix representations.

Definition 2.1. The nth bivariate Pell hybrinomial, P,H(x, y) and the bivariate Pell-Lucas hybrinomial, Q,H(x, )
are defined by

P,H(x,y) = Py(x,y)+ Pus1 (X, ¥) i+ Pyuia (X, y) €+ Ppys (x, y) h (5)
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and
Q.H (x/ y) = Qulx, ]/) + Qna1 (x/ y) i+ Quealx, y)f + Qnss (x/ ]/) h (6)

where Py(x,y) and Q,(x,y) are the nth bivariate Pell polynomial and the nth bivariate Pell-Lucas polynomial,
respectively. Here hybrid units i, &, h satisfy the equations i* = -1, € =0, h*> =1, ih=-hi=¢+1i.

Using the Definition 2.1, we obtain the bivariate Pell hybrinomial sequence, {P,H (x,y)},,, and the
bivariate Pell-Lucas hybrinomial sequence, {Q,H (x,¥)},,- Additionally, these sequences can also be
generated from recurrence relations given by the following theorem.

Theorem 2.2. For n > 2, the recurrence relations of the bivariate Pell hybrinomial sequence and the bivariate
Pell-Lucas hybrinomial sequence are

P,H(x,y) = 2xyP,.1H (x,y) + yP,—2H (x,y) ()
QuH (x,y) = 2xyQu1H (x,y) + yQu-2H (x, y) (8)
with
PoH(x,y) = i+ (2xy)e+ (4x2y2 + y) h,
PiH(x,y) = 1+ Qxyi+ (4x2y2 + y) e+ (8% + 4xy*)h
and
QuH(x,y) = 2+Qxy)i+ (4x2y2 + 2]/) €+ (8> + 6xy*)h,
QiH(x,y) = 2xy+ (4x2y2 + Zy)i + <8x3y3 + 6xy2) e+ (16364]/4 +16x%y° + 2]/2) h
respectively.

Proof. First, let us prove the equation (7). Using the equations (1) and (5), we obtain

2xyP,1H (x,y) + yPy,»H (x) 2xy (Pp-1 (%, y) + Py (%, y) i+ Pps1 (%, y) € + Pryz (x, y) h)

+ Y(Pu2 (x, )+ Pp1 (x, y)i+ Py (x, y) € + Ppi1 (x, y) h)

= 20yPyo1 (6, ) + YPu2 (%, y) + (2xyPu (%, y) + yPu1 (%, y)) i

+  (2xyPu1 (x,y) + yPy (x, y)) € + (2xyPus2 (X, y) + yPui1 (x, y)) h
= Py(%y)+Pu1 (X, y)i+ Pra(x,y) e+ Pz (x, ) h

= P,H(xy).

Similarly, let us now prove the equation (8). Using the equations (2) and (6), we obtain

2xyQu-1H (x, y) + yQu—2H (x) 2xy (Qu-1 (%, y) + Qu (¢, ) i + Quat (x,y) €+ Quiz (x, ) h)
+ Y (Qu2 (6, y) + Qua1 (v )i+ Qu(x,y) €+ Qua (x, ) h)
= 20yQu-1 (%, ¥) + yQu— (%, y) + (2xyQu (x, y) + yQu-1 (x, y)) i
+  (2xyQua (%, ¥) + yQu (x, y)) € + (2xyQusz (x, y) + yQns1 (x, y))
= Qu(xy)+ Que1 (x,¥)i+ Quia(x,y) €+ Quiz (x, y)h
= QuH(x,y).

Thus, the proof is completed.
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2.1. Binet Formulas and Generating Functions of the Hybrinomials P, (x, y) and Q, (x, y)

In this section, we present the Binet formulas and generating functions for the bivariate Pell and bivariate
Pell-Lucas hybrinomials.

The Binet formula, which is one of the general formulas that allows the determination of the nth term
of a sequence without the need to know all previous terms, is given by the following theorem for both the
nth bivariate Pell hybrinomial and the nth bivariate Pell-Lucas hybrinomial.

Theorem 2.3. For n > 0, the Binet formulas for the bivariate Pell and bivariate Pell-Lucas hybrinomials are given

by

G y)o"(xy) = pxy)p"(x y)
o(xy)=py)

P,H (xr y) = )

and
QuH(x,y) = 6(x, )" (x,y)+p(x,y)p" (x,y) (10)

where 6 (x,y) = 1+ a(x, )i + o*(x, y)e + >(x, Yh, p(x,y) = 1+ p(x, )i+ p?(x,y) € + p*(x, yh and o(x,y),
p(x, y) are the roots of the quadratic equation t* — 2xyt — y = 0, respectively.

Proof. First, let us prove the equation (9). Using the equations (3) and (5), we have

P,H(x,y) = Pu(x,y)+Puaa(x,y)i+Pro(x,y) €+ Prz(x,y)h

_ -y (6”” (x,y) = p" (x, y))i
o(x,y) —p(x,y) o(x,y) —p(xy)

Y SN

o, y) = p(xy) ax,y) = p(xy)
(1 +o(x,y)i+a?(x,y)e+’(x,y) h) o"(x, y)
a(xy)=p(xy)
(l + p(x, i + p2(x, y)e + pP(x, y)h) p"(x, )
a(x,y)-pxy)
6(x,y)d" (% y) - Py p" (¥ Yy)
o(x%,y)=pxy)
and now using the equations (4) and (6) to prove the equation (10), we have
QuH (x, y) Qu(x,y) + Qua1 (v, y)i+ Quia (v, y) €+ Quis (x, ) h
= 0" () +p" @) + (" () +p" (v y))i
+ (0" y) +p"2 (xy)) e+ ("2 (xy) + p"P (x,y))h

= (1+o(x yi+ot(xy)e+ad(x, ]/)h)a (x, )

+ (14 ple, y)i + p(x, ye + p(x, )h) p"(x, )
= s(x,y)a" (x,y)+pxy)p"(xy)

where 6 (x,y) = 1+ o(x, y)i + o*(x, y)e + >(x, y)hand p(x,y) = 1+ p(x,y)i+ p(x,y) € + p>(x, y)h. So, the
proof is completed.

We now present the generating functions of the bivariate Pell and bivariate Pell-Lucas hybrinomials by
the following theorem.
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Theorem 2.4. The generating functions of the bivariate Pell and bivariate Pell-Lucas hybrinomials are

B = . _ PoH(x,y)+P1H (x,y)t - 2xyPoH (x, y) t
p@) = 20 P,H(x, )t = e (11)
and
R o QoH(x,y) + QiH (x,y) t = 2xyQoH (x, y) t
q() = Z;‘ Q.H(x, yt" = T (12)

where P,H (x,y)and Q,H (x,y) are the nth bivariate Pell hybrinomial and the nth bivariate Pell-Lucas hybrinomial,
respectively.

Proof. First, let us prove the equation (11). Let p(t) = Y., P,H(x, y)t" be the generating function of the
bivariate Pell hybrinomials. Using the equation (7), we have

p(t) = Z P,H (x,y)t"
n=0

PoH (x,y) + P1H (x, y)t + Z P,H (x,y)t"
n=2

= PyH(x,y)+P1H(x, y)t + Z (2xyP,-1H (x,y) + yPu—oH (x, y)) "
n=2

PoH (x,y) + P1H (x, y) t + 2xyt Z P,H (x,y) t" — 2xyPoH (x, y) t + yt Z P,H (x,y)t"
n=0 n=0

PoH (x,y) + PrH (x, y) t + 2xytp (t) — 2xyPoH (x, y) t + yt*p (t)

and we obtain that
(1 — 2xyt — ytz) p(t) = PoH(x,y)+ P1H (x,y)t —2xyPoH (x, y) .
Then, the generating function of the bivariate Pell hybrinomials is

PoH (x,y) + P1H (x, y) t — 2xyPoH (x, y)
1—2xyt — yt? ’

pt) =

Now, let us prove the equation (12). Let g () = Y.,2o Q.H(x, y)t" be the generating function of the
bivariate Pell-Lucas hybrinomials. Using the equation (8), we have

9t) = Y. QuH(xy)t"
n=0

QoH (x,y) + QiH (x,y) t+ Y QuH (x, 1) t"

n=2

QoH (x,) + QUH (x,y) t+ Y (2xyQuaH (x,Y) + yQu2H (x, 1)
n=2

QoH (x,y) + Q1H (x, y) t + 2xyt Z QuH (x, y) " — 2xyQoH (x, y) t + yt2 Z QuH (x, y)t"

n=0 n=0
QoH (x,y) + Qi1H (x, y) t + 2xytq (t) — 2xyQoH (x, y) t + yt*q (¢)
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and we obtain that
(1-2xyt—y2)q(®) = QoH (x,y) + QiH (x,y) t = 2xyQoH (x, y) .
Then, the generating function of the bivariate Pell-Lucas hybrinomials is

QoH (x,y) + Q1H (x, y) t — 2xyQoH (x, y) t
1—2xyt — y2 '

q(t) =

Hence, the proof is completed.

2.2. Matrix Representations and Identities of the Hybrinomials P, (x, y) and Q, (x, y)

In this section, we derive the matrix representations of the bivariate Pell and bivariate Pell-Lucas
hybrinomials. Then, we present several interesting identities, including Catalan’s identity, Cassini’s identity,
d’Ocagne’s identity and Honsberger’s identity for these hybrinomials.

The following theorem presents the matrix representations of the bivariate Pell and bivariate Pell-Lucas
hybrinomials.

Theorem 2.5. Let n > 0 be an integer. Then,

PuoH(x,y) PumH(xy)| _ [P2H(xy) PiH(xy)||2xy 1 " (13)
P,.1H(x,y) P,H(x,y)| =~ |PiH(x,y) PoH(x,y)|| vy O
and n
[QmH (v y) QunH(x, y)] _ [QzH (x,y) QiH(x, y)] [ny 1] (14)
Qn+1H (x, }/) QnH (x, }/) QlH (xr }/) QOH (x/ y) y 0

where P,H (x,y)and Q,H (x, y) are the nth bivariate Pell hybrinomial and the nth bivariate Pell-Lucas hybrinomial,
respectively.

Proof. By using induction on n. First, let us prove equation (13). If n = 0, the result is immediately clear.
Let us assume that the result holds for any n > 0 and therefore,

[Pn+zH (x,y) PpH(x, y)} _ [PZH (x,y) P1H(x, y)] [ny 1]”
Pn+1H (x/ y) PnH (x/ y) B PlH (x/ y) POH (x, y) y 0f -

We now aim to prove that the equation holds for the integer n + 1. In other words,
PusH(x,y) Pu2H(x,y)| _ [P2H(x,y) PiH(x,y)||2xy 1 s
PuioH (x,y)  PuniH (x,y) PiH@y) PoHx ||y 0

Thus, using the induction hypothesis and the equation (7), we obtain

P,H(x,y) PiH(x,y)||2xy 1 ™ _[PH(x,y) PiH(x,y)|[2xy 1 "axy 1
[PlH(x, y) PoH(x, y)” y O] - »PlH(x, y) PoH (x, y)” Y O] [ y O]

[P,..H (v, y) PuH(x, y)- 2xy 1
»Pn+1H (xy) PuH(x,y) 1Yy 0

[2xyP, ,H(x,y) + yP, . ;H(x,y) Pu2H(x,y)
| 2xyPuaH (v, y)+yP,H(x,y) PuaH(x,y)
[PisH (v, ) PraoH (0) |
|PrioH (x,y)  PpaH (x,y) |
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Now, let us prove equation (14). If n = 0, the result is immediately clear. Let us assume that the result
holds for any n > 0 and therefore,

[szH (x,y) QuiaH(x, y)]

_ |QH(xy) QiH(x,y)||2xy 1]”
QunH(xy) QuH(x,y) .

= [Q1H(x,y) QOH<x,y>H y 0

We now aim to prove that the equation holds for the integer n + 1. In other words,

[Qn+3H (¢, y) Qui2H (x, y)}

_ [QH(y) QH(y)][2xy 1]
Qn+2H(X,y) QmH(x,y)

- & AP s

Thus, using the induction hypothesis and the equation (8), we obtain

[&wa gHmeMqu_'@wa gHmeMyqqkyq
QiH(xy) QHEy)||ly 0 ~ |QHEyY) QHEy||ly 0|y 0

Qmmw)%mwﬂFyq
_Qn+1H (X, }/) QHH (X, }/) y 0

>2nyn+2H (x' ]/) + ]/Qm—lH (xr y) Qn+2H (X, y)]
| 2xyQunH (x,y) + yQuH (x,y)  QusH (x,y)

—Qn+3H (xr 3/) Qn+2H (X) ]
»Qn+2H (x/ y) QuaH (JC, y) '

So, the proof is completed.

The following theorem gives the Catalan’s identities for the bivariate Pell and bivariate Pell-Lucas
hybrinomials.

Theorem 2.6 (Catalan’s Identity). For 0 < r < n, we have

)" [6(xypy)d -0 (xyp” (xy)
(O(X, y) - p(xr y))Z
P, y)6(x,y)(1-p" (x,y) 07" (x,1))]

PyirH (%, y) PucrH (x, y) — (PH (x, ) =

15
00 9) - p 1)) (1
and
QuarH (x4, 1) QuorH (6, 1) = (QuH (v, 1)) = (=)' [6(x,y) p(x, 1) (0" (x, ) p™" (x,y) = 1)
+ py oy (p (xy) o (x,y) - 1] (16)

where P,H (x,y)and Q,H (x,y) are the nth bivariate Pell hybrinomial and the nth bivariate Pell-Lucas hybrinomial,
respectively.

Proof. First, let us prove equation (15). Using the equation (9), we have
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PyirH (%, ) PasH (%, y) = (PH (x,y))?
_ @y o™ y) = puy) p o) (6 (v y) o y) = P y) " (X, Y))
(o(x, y) = px, )’
()" (ny) - Py p" (ny) (6 (xy)o" (xy) - p(xy) p" (x,y))
(o(x, ) = p(x, ¥))*
_ 0ty ploy)a” o) p" (v y) A =o" (v y) p™ (%, y)
(o(x, y) = p(x, y))*
Py pt (v y) ot hy) A - p (xy) o (v y))
(o(x,y) = plx, )
_ (W EEpey - @y e ) +pE sy A -p vy (v y)]
(o, y) = px, y))?

Now, let us prove equation (16). Using the equation (10), we have

QuerH (%, 1) QurH (x,y) = (QuH (x, y))?
=0y () +p Y " () (6 (xy) " (xy) +p(xy) p" (%, y)
—(@xy)d" (Y +py)p" (xy) (6 (xy)d" (x,y)+p(x,y)p" (xy))
=6(xy)py)d (xy)p" (Y (0 (xy)p™ (xy)-1)
+p(x, )6 (x, y)p" (x, y) 0" (x,y) (p" (x, y) o™ (x,y) — 1)
=)' 6y pEy @y y) -1 +pxy) 60y (" (xy)o (xy) 1)
Thus, the proof is completed.

Note that if we take r = 1 in the Theorem 2.6, we obtain the Cassini’s identities for the bivariate Pell and
bivariate Pell-Lucas hybrinomials. So, we can write following corollary.

Corollary 2.7 (Cassini’s Identity). For 1 < n, we have

' oy pty(1-06yp )
(0(x, ) - p(x, y))*
P y)o @y (1-py) o (xy)
(0(x, ) - p(x, y))*

PutH (x,y) PactH (x,y) = (PuH (x,y))° =

and
QuiH () QutH (5 y) = (QH )’ = (9" [6n)p ) (0@yp (xy) -1)
+ oy (pEyo by -1)]

The following theorem gives the Honsberger’s identities for the bivariate Pell and bivariate Pell-Lucas
hybrinomials.
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Theorem 2.8 (Honsberger’s Identity). For n,m > 0, we have

52 (x,y) 0" (x,y) (1 + 0 (x,))
(0(x,y) = p(x, y))’
y-D6(xy)pxya"(xy)p"(xy)
(0(x, y) = p(x, y))*
p(x,y)6(x,y)p" (x,y) 0" (x,y)]
(0(x, y) = p(x, y))’
P2 (x, ) " (x, y) (1 + p2(x, )

+ 17
(O'(X, 3/) - P(x/ y))z ( )

P,H (x,y)PyH (x,y) + Pus1H (x, y) Pyia H (x, y)

and

QuH () QuH (%, y) + QuarH (6, ) QuaaH (v, ) = 82 (x, 1) 0™ (x,y) (1+ 0% (x,))
+ A=y ply) o (xy)p" (xy)
+ puy)o(xy)p" (x,y)o" (x,y)]
+ By ) (1+ 0P y) (18)

where P,H (x,y) and Q,H (x,y) are the nth the bivariate Pell hybrinomial and the nth the bivariate Pell-Lucas
hybrinomial, respectively.

Proof. First, let us prove equation (17). Using the equation (9), we have

P,H (x,y)PyH (x,y) + Pys1H (X, y) P H (x, y)
_ 0@y y) - ploy) p" (5 y) 6 y)a" (v y) - p(xy) p" (% y)
(0(x, y) - p(x, v))*
L BGEW ™ xy) = pEy) p™ (L y)E & y) o™ (o y) - pxy) p" (5, y))
(@, y) - plx, y))’
62 (x, 1) 0" (x, ) (1 + 02 (%, ) = 8 (. ) P (2, 1) " (%, 1) p" (x,y) (1 + 0 (x, ) p(x, 1))
(0(x, y) = p(x, )’
P,y & (6 y)p" (v, y) ™ (6, y) (1 + p (6, 1) o, ) = P (x, ) p"*"(x, y) (1 + p2(x, 1)
(0(x, y) - p(x, y))?
6% (x,y) 0™ (x,y) (1 + 02 (x, )
(@(x,y) - plx, y))’
(-6 y)pxy)a"(x,y)p" (x,y)+p(xy)6(xy)p"(x,y)0" (x,y)]
(0(x,y) = plx, y))?
Py (1+p2x,y))
(0(x, y) = p(x, ) '

Now, let us prove equation (18). Using the equation (10), we have
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QuH (%, ¥) QuH (%, y) + Que1H (%, y) Quar H (x, y)
=0 (" (xy)+pxy) " (xy) 6 (xy)o™ (x,y)+p(x,y)p" (x,y)
+@ (6, y) 0" (x,y) + P (ny) " (2 Y@ (o y) 0" () + P (xy) " (3 )
=62 (x,) "™ (x,y) (1 + 0% (x, ) + 6 (6, ) p (x, 1) 0" (x,¥) p" (%, y) (1 + 0 (x,¥) p(x, )
()8 (6 y) p" (Yo" (5 y) (L+p () ol ) +p* (x,y) p" 06 ) (1 + p*(x, )
= 6% (6, ) """ () (1 + 0 (x, )
+(1-y) @y px,y)a" (xy)p™ (xy) +py)6(xy) p" (x,y) o™ (x,))
+02 () P, ) (1 + p2(x, ).

Therefore, the proof is completed.

The following theorem gives the d’Ocagne’s identities for the bivariate Pell and bivariate Pell-Lucas
hybrinomials.

Theorem 2.9 (d’Ocagne’s Identity). For n < m, we have

()" [66 9P (6, ) 0" () = p (5, 1) 6(x, )p" " (x, )]

PmH(x/ y)Pn+1H(x/ y) - Pm+1H(x/ y)PnH(xr ]/) = o (x y) B (x y) (19)
and
QuH (,y) QuarH (6, ) = Qua Hx, ) QuH (v, y) = (=) (6%, y) = px, ) [-6 (&, 1) p (x,y) 0" " (x, )
+ Py oy (%) (20)

where P,H (x,y) and Q,H (x,y) are the nth the bivariate Pell hybrinomial and the nth the bivariate Pell-Lucas
hybrinomial, respectively.

Proof. First, let us prove equation (19). Using the equation (9), we have
P.,H (x,y) Pys1H (x,y) = Pp1H (%, y) PH (x, y)
(6(c ) o" (v, y) = plx ) p" () (6(x, ) o
(0 (xy) -pEy)
(6 v o™ (v y) = pley) o™ (5, )) (6(x ) 0" (%, ) = px, y) p" (x,))
(0 (xy) - pEy)
0y (v y) (v y) p" (% y) (=p(x,y) + 0 (x, )
B @ (xy)—poy)’
Pl y)E(y) p" (v y) o (x,y) (0 (v, y) — p (x, 1)
0 (xy) -pEy)
_ oyt xy)p" ) - Py y) p" ()" (v y)
o(x,y)—pxy)
()" [50c, 9P (&, ) "™ (2, ) = p (3, 1) 6(x, ¥)p" " (x, )]
B a(x,y)—p(xy) ’

n+1

) - Pl y) P (v y))
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Now, let us prove equation (20). Using the equation (10), we have

QuH (x/ y) QunH (x/ y) = QuaH (X, ]/) Qu.H (x, y)
= (6(x, ) 0" (v, y) + p(x, y) p" (x,)) (6(x, y) 0

n+1

@) +pxy) " ()

— (6w o™ (6 y) + plx, ) p" () (606 1) 0" () + plx,y) " (3, )

= =80, p(x, Yo" (x,y) p" (v, y) (—p(x, y) + o (x,y)

+p(x, )& (x,y) p" (x, y) 0" (x,y) (0 (v, ) — p (x, ))

=@y —ply =6y ply)a” (xy) p"(xy) +p (Y& y)p"(x y)d" (x, y)]
= ()" (0, 1) = plx, 1)) [0 (5, ) p (6, ) 0" " () + p (5, 1) 6, )" " (x, )]

Hence, the proof is completed.

3. Conclusion and Suggestion

The generalizations and applications of numbers and polynomials defined by recurrence relations have
been presented in many ways. In this study, the bivariate Pell and bivariate Pell-Lucas hybrinomials
are defined by extending the classes of the bivariate Pell and bivariate Pell-Lucas polynomials and hybrid
numbers, which arise from the combination of different algebraic structures. The Binet formulas for both the
nthbivariate Pell hybrinomial and the nth bivariate Pell-Lucas hybrinomial were derived, along with matrix
representations. Additionally, the generating functions, Catalan’s identity, Cassini’s identity, d’Ocagne’s
identity and Honsberger’s identity for these hybrinomials.

It would be interesting to explore these hybrinomials further in matrix theory and linear algebra.
Additionally, more general formulas for calculating the nth terms and sum formulas for the sequences of
these hybrinomials can be investigated.
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