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The multiplicity of eigenvalues of a vectorial diffusion equations with
discontinuous function inside a finite interval

Abdullah ERGUN?

*Vocational High School of Sivas, Cumhuriyet University

Abstract. In this study , m-dimensional vectorial diffusion equation with discontinuous function inside a
finite interval is considered. Considering the asymptotic representation of the solution of the problem, we
have obtained some conclusions about the multiplicity of eigenvalues. We have proved that, under certain
conditions on potential matrix, the problem can only have a finite number of eigenvalues with multiplicity
m.

sectionIntroduction Consider the m-dimensional vectorial singular diffusion equations

~y + [2p () +q@)]y =A% (1) y, x € (0,m) 1)
y(©0)=0 ()
y (=0 ©)

where A is the spectral parameter ,y = (1, 2, ...ym)T is an m-dimensional vector function,

1, x€(0,a1)
6(x) =4 a?, x€(ay,a)
B, x€(a,m)

anda>0,a#18>0,8#1,4(x) €L [0,7], p(x) € W [0,n], a1,a5 € (0,7), a1 < a2. The potential matrix
(2Ap (x) + g (x)) is an m X m real symmetric matrix function. 6 denotes the m-dimensional zero vector.

Many studies on the theory of second-order differential operators have been studied in [7, 18]. One of
the most important of these was made in 1946 by Titchmarsh [20]. In 1984, the studies on the spectral
theory of singular differential operators were conducted by Levitan [21]. Many physical phenomena, such
as fluid flow and heat dissipation [23], atomic mixing modelling [24] include a diffusion process. Singular
differential operators with conditions of discontinuity are often used in mathematical physics, in geophysics
and natural sciences. In general, these problems are associated with discontinuous material properties. For
example; It is used to in determining the parameters of the electricity line in electronics [22]. Also, it is used
to determine geophysical models for the release of the earth [9]. The discontinuity here is the reflection of
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the shear waves at the base of the earth’s crust. In 1999, C. L. Shen and C.T. Shies [5] studied the multiplicity
of eigenvalues of the m-dimensional the vectorial Sturm-Liouville problem

-y +Qy=Ay, y0)=y@1)=

where Q is continuous m X m Jacobi matrix-valued function defined on 0 < x < 1. Q. Kong [4] generalized
to the case when Qis real symmetric. However, there are no such result for the discontinuous problem
1) - ).

In this study, firstly we define the characteristic function of the eigenvalues of vectorial problem (1) — (3).
Following this, we prove the conclusion that the eigenvalues of the problem coincide with the zeros of
characteristic function. Then, we show the asymptotic forms of the solutions and obtain some results about
multiplicity of the eigenvalues.

1. Characteristic function and asymptotics of solutions

Denote H = L? (I, C™) the Hilbert space of vector-valued functioons with the scalar product

(f.9) = f 7 fudx + f e A
0 a az 0

where f = (fi, for o fu)'s 9 = (91,92, gw)" and figi € 2D, i) = f@)| g, L0 = f@), ,, and
frx)=f (x)| ()’ We can define an operator L associated with the problem (1) — (3) on H
Li=y"+[2p () +q@]y=21*6(y, yeD(L)
D(L)={yeH; y,y € AC[I,C"]}, Ly € L*[I,C"]
vy =y(m=06
Lemma 1.1. The operator L is self-adjoint.

The proof is similar to the scaler case in [12].
We consider the problem on the three intervals (0,4;) , (a1,42) and (4, ) respectively, where 6,, denotes
m X m zero matrix and E,,denotes m X m identify matrix. On (0, 41), the matrix initial value problem

-Y" +QAp () +g(x)Y=A%-1-Y, x€(0,a1) @
(Pl (O/ A) =En lﬂbi (0/ /\) = 0O

has a unique solution ¢; (x, A). What’s more, for any fixed x € (0,a;), ¢1 (x, A) is an entire matrix function
in A [1],p17. By variation of constants, we have

X
¢1(x, A) = cos AxE,,, + % f sinA (x — ) 2Ap (t) + q (1)) ¢1 (¢, A) dt. (5)
0
on (a1,a) the matrix value problem

=Y+ QAp(x) +q (1) Y = A2a?Y , x € (a1,a2)
¢z (a1 +0,A) = ¢1 (a1 —0,A) (6)
(;b; (ﬂl +0, /\) = gbi (ﬂl -0, A)

has a unique solution ¢, (x,A). In addition to, for any fixed x € (a1,42), ¢2 (x,A) is an entire matrix
function in A. By variation of constants, we have

@ (x,A) = ateM' @ 4 gl 4 o foal SmA(H © t)Q(t)y (t,A)dt

7
var [ EEOD o 1y (1, Ay + [ sndses ”Q(t)y(t A)dt 7
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where u* (x) = zax ¥ aay + a1, Q(t) = 2Ap (t) + 4 (t),
or
¢2 (x, A) = cos Aa (x — a1) ¢y (a1 — 0) Eyy + 1= sin Aa (x — a1) ¢y (a1 — 0) E,

+ j:: sm/\a(x H (2/\]7 () + q (t)) b2 (t, A)dt. 8)

on (ay, ) the matrix value problem

¢3(az +0,A) = P2 (a2 —0,7A) )

=Y+ (Ap () +q () Y = A?B2Y, x € (ap, )
¢35 @2 +0,A) =5 (a2 —0,7)

has a unique solution ¢3 (x, A). In addition to, for any fixed x € (ay, ), ¢3 (x, A) is an entire matrix function
in A. By variation of constants, we have

$3 (x, ) = a*pre™ ™) 4 g7 BTN 4 gt Bl 4 g7 BreitsT()
Bt foj —anMkAi(x)‘f)Q(t)y(t, Aydt +atp fO“ IO (1) y (¢, A)
rarp [ DD (1 y (1, Ayt + o pr [ DD (1) (1, ) (10)

gt rm sin A(px— ﬁaz+aa2

“ 0 0ty y (1, A) dt

_% Om sin A(px— [Saz—aa2+at)Q(t) Yt A)dt + fx sm/\ﬁ(x t)Q(t)y(f, A)dt

where Q (t) = 2Ap (£) +q (t),u* (x) = xaxFaa; +ar,a* = 1 (1 + }y),ﬁi =1 (1 + /%), k* (x) = Bx—Ba + p* (a2),

s*(x) = —Bx + fay + u* (a2) ,
or

@3 (x,A) = cos AB(x —az) P (a2 —0,A) Ey + 55 sm)\ﬁ(x—aZ)gbz (ap —0,N)E,
o [ IR0 (0 1)+ () 95 (1, )t (

Let
(Pl xrA)/ X € (0 ﬂl)
O, ) =2 ¢a(x,A),x €(ar,a2) .
¢3 (xr /\),X € (aZI 7T)

Then, any solution of the equations (1) satisfying boundary condition (2) can be expressed as

¢1(x,A)co, x€(0,a1)
yx,A) =@, A)cr =3 ¢a(x,A)co, x € (a1,a2) (12)

(P3 (x/ /\) Co, X € (112, 7T)

where ¢; is an arbitrary m-dimensional constant vector. If A is an eigenvalue of the problem (1) — (3), then
co # 6 and y (x, A) satisfies the boundary condition at x = 7, that is,

Yy (m,A)=¢" (m,A)co = ¢5(m,A)co = 6.
Thus, we get
det (¢} (m, 1)) = 0

Similarly, on (4, 1), consider the matrix initial value problem

{ Y7+ QAp ) +g(0))Y = A2B2Y, x € (@, 70) (13)

V3 (,A) = Eyy 5 (1, A) = O

The problem (13) has a unique solution 3 (x, A). Furthermore, for any fixed x € (ay, ), Y3 (x, A) is an entire
matrix function in A.
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Consider the matrix initial value problem on (a1, 43),

17[)3 (ﬂz +0, A) = ¢2 (az -0, A) . (14)

=Y+ QAp(x) +q ()Y = A2a?Y , x € (a1,a2)
Y5 (a2 +0,4) = ¢ (a2 = 0,A)

The problem (14) has a unique solution y»; (x, A). Furthermore, for any fixed x € (a1, a2), Y2 (x, A) is an entire
matrix function in A.
Consider the matrix initial value problem on (0, a1),

Yo (a1 +0,A) =1 (a1 —0,A) (15)

Y +QAp(x)+g(x)Y=A%-1-Y, x€(0,a)
P (@ +0,A) = 9, (a1 — 0, A)

The problem (15) has a unique solution 1 (x, A). Furthermore, for any fixed x € (0,41), 1 (x, A) is an entire
matrix function in A. Let
lPl (x/ A)/ X € (Olal)
Y, A) =3 Pa(x,A),x€(ar,a) .
Y3 (x, A),x € (ap, M)

Then, any solution of the equations (1) satisfying boundary condition (3) can be expressed as

Y1 (x,A)cy, x€(0,a1)
y,A) =9, A) e =1 Pa(x,A)cr,x € (a1,a2) (16)
Y3 (x, A)c1,x € (a2, )
where ¢; is an arbitrary m-dimensional constant vector. If A is an eigenvalue of the problem (1) — (3), then
c1 # 0and y (x, A) satisfies the boundary condition at x = 0, that is,

¥ 0,1)=1¢'(0,A)c1 =9, (0,A)c; =0

Thus, we get
det (¢ (0, 1)) = 0.

LetAj(A) =W (¢ i (5, A), P (x, /\)) be the Wronskian of solution matrices ¢; (x, A)and ¢ (x, A), j = 1,2, 3, that
is,
_ ¢1 (X, /\) Hbl (X, /\) _ (PZ (x/ /\) 1)[}2 (xr A)
MW=| B B [ aw=| SR Ba | o
A (A) — 4)3 (X, /\) 1#3 (X, /\)
’ ¢y (x,A) P (xA) |

Lemma 1.2. A;(A) = Ay (A) = Az (A) forall A € C.

Proof. Because the Wronskian of the solution matrices ¢; (x, A) and 1; (x, A) is independent of x ,

_ | $3@+0,4) Y3(a2+0,A) | _| ¢2(a2—-0,A) 12(a2—0,4)
Az (A) = Ag (Dlyzgys0 = O (@ +0,0) W@ +0,4) | 7| ¢, (a2 —0,1) (a2 —0,1)
_ ¢2 (x/ /\) ¢2 (X, /\)
oy (x ) Ph(x,A)

_ _ | P2(@1+0,4) (a1 +0,1)
= Az (A) = AZ (/\)lx:g1+0 - (PZ (ai + 0, A) ¢z (ai + 0’ )\)

x=a,—0

=A1(A)

x=a1—0

_| ¢1(@-0,4) 1(a1-0,4) ‘ _| (A Yi(xA)
Qbi (al - 0/ /\) llbll (al - 0/ A) ¢i (x/ /\) l]b/l (x/ /\)

the proof is completed. [
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Denote A (A1) = A1 (A) = Ay (A) = Az (A), we have the following lemma.
Lemma 1.3. A is an eigenvalue of (1) — (3) if any only if A(A) = 0.

Proof. Necessity: Assume that Agis an eigenvalue of (1) — (3). y (x, Ao) is the eigenfunctions corresponding
to Ao, then by (16) we have

¢1(x, Ao)cs0, x €(0,a1)
y(x,A0) = ¢ (x,Ag)czo =4 P2(x,Ao)czo, x € (a1,a2) (18)
3 (x, Ag) c30, x € (az, )

Y1 (x, Ag) ca0, x € (0,a1)
y(x,Ao) =P (x, Ao) cao =3 Y2 (x, Ao) cao, x € (a1,42) (19)
Y3 (x, Ag) ca0, X € (a2, )

C30, C40 are m-dimensional nonzero constant vector. So from (18) and (19), we have

$1(x, Ao) 30 = P1 (x5, Ao) cao
(1)/1 (-x, AO) C30 = wi (xl AO) Ca0 }x (S (0, ﬂl) .

By direct simplification, we get

(le(x//\o) —l,Ul(x/)\o))'(Cgo (6
$1(x,A0) =97 (x, Ao) g )\ O )

Because c39, ¢4 # 0, the coefficient determinant of above linear system of equations

P1(x, Ao) =1 (x, Ao) | _ (-1)" ¢1(x, Ao) Y1 (x, Ao)
¢1 (xr AO) _l/}i (x/ /\0) (P/l (xr AO) 1/"1 (xr AO)
= (=1)" A1 (Ag) = A2 (Ag) = A3 (Ag) = A(Ap) =0

Sufficiency:
If Ag € C, A(Ag) = 0. Then the linear systems of equations

( P1(x, Ag) 1 (x, Ag) )( Co ):( 0 ) ( $2(x, Ao) 2 (x, Ao) )( co )_( 0 )
cz)ll (x/ AO) llbll (X, AO) 1 0 ) ¢/2 (X, /\0) 170/2 (x/ /\0) 1 h

(qbs(x,Ao) Bbs(x/)\o)).(co e
¢3(x, A0) 95 (x, Ao) aa |l \0

have nonzero solutions. By a direct computation, we get

1 (x, Ag) co = =11 (x, Ag) ¢ P2 (x, Ag) co = =12 (x, Ap) €
9, (Ao =~ (6 Aoy }"e O g1 (6 A0) o =~ (x Aoy }"e(”l'”z)
and
3 (x, Ag) co = =3 (x, Ag) &1
&, (x, o) co = —, (x, o) s }" € (@2 m).
Denote

2 (x, Ao) co = =2 (x, Ag) c1, x € (a1,a2) .
¢3 (x, Ao) co = =3 (x, Ag) €1, x € (a2, T0)
We note that y (x, A) satisfies the boundary condition (2), (3). That is, y (x, A¢) is the eigenfunctions corre-

sponding to Ag. Thus Ay is an eigenvalue of the problem (1) — (3).
|

1 (x, Ag) co = —1p1 (x, Ag) c1, x € (0,a1)
y(xr AO) =
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Remark 1.4. As two especial case

@1 (x, Ag)  P1(x, Ag)
(Pi (X, AO) llji (xr AO)

_| ¢3(x,A0) 3 (x, Ao) ¢3 (1, Ao)  En
¢5 (e, Ao) Y5 A0) | | @5(L,A0)  Om

Definition 1.5. A (A) will be called the characteristic function of the eigenvalues of the problem (1) — (3).

Definition 1.6. If there is a A1 (A) to be A(A) = (A = Ag)" Ay (A), algebraic multiplicity of eigenvalue Ais called
m. The geometric multiplicity of A as an eigenvalue of the problem (1) — (3) is defined to be the number of linearly
independent solutions of the boundary value problem. If we denote 2m X 2mmatrices
,Ao) 1 (x, Ag) ¢2(x, Ao) P2 (x, Ag)

A(x, Ag) = (z)/l (x 0 ’ ,B(x,Ag) = ’ ’ d

(o) ( o1 ¥ PO g ) gy o) )

$3(x,Ao) 3 (x, M)

C 7 /\ = ’ ’

(x,A0) ( ¢, (x, Ao) P (x, Ao)
the rank of matrix A (x, Ag) as R (A (x, Ao)). Similarly, B (x, Ag) as R (B (x, Ag)) and C (x, Ag)as R(C (x, Ag)).

Ew  1(0,A0)

A) = L ‘ O (0, A0)

= det (¢4 (0, 1))

A(A) = (-1)" det (¢ (1, 1)).

Corollary 1.7. The geometric multiplicity of Ay as an eigenvalue of the problem (1) — (3) is equal to 2m — R (A (x, Ag))
or2m — R (B (x, Ag)) or 2m — R(C (x, Ag)).

Corollary 1.8. R(A (x, Ag)), R(B(x, Ag)) or R(C (x, Ap)) is at least equal to m, so the geometric multiplicity of Ag
varies from 1 to m. When the geometric multiplicity of an eigenvalue is m, we say the eigenvalue has maximal (full)
multiplicity. In this study, we refer multiplicity as the geometric multiplicity.

An entire function of non-integer order has an infinite set of zeros. The zeros of an analytic function which does
not vanish identically are isolated [3]. Y} (0,A) and ¢}, (m, A) are entire function of order § matrices. The sums and
products of such functions are entire of order not exceeding }. Hence, the determinants of /; (0, A) and ¢ (1, A), that
is, the caracteristic functions are also non-integer.

Eigenvalues for (1)—(3) are real. The boundary value problem (1)—(3)has a countable number of eigenvalues
that grow unlimitedly, when those are ordered according to their absolute value.
The norm of a constant matrix as well as the norm of a matrix function A is denoted by [|A]|.

A (x) = (aij)Z=1 - MR

mxms fOT any x € I, the norm of A (x) may be taken as

A @Il = max )" [a;] (20)
B

Let A =s%,s =0 +it, 0,7 € R. We have the following three lemmas.

Lemma 1.9. When |A| — oo, the following asymptotic formulas hold on
O0<x<m,
1 (x,A) = cos (Ax) Eyy + O (IA|™" %) (1)

¢} (x,A) = —Asin (Ax) Ey, + O () (22)
Proof. See [1]. O

Lemma 1.10. When |A| — oo, ¢ (x, A) and ¢ (x, A) have the following asymptotic formulas on ay < x < ay ,

02 (x,A) = %oﬁ exp (—i(/\y+ (x) — % fal [20) dt)) E. (1 +0 (%)) (23)
¢y (x,A) = %a* (p(x) — Aa)iexp (—i (Ay* (x) - % L p(t) dt)) E,+0O(1) (24)

where ¥ (x) = Fax t any +ay , aF = 1 (1 + [ly)
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Proof. Since ¢, (x, A) is the solution of initial value problem (6) , we have
2 (x, 1) = a* cos[Ap* (1) = L ["p () dt|E,
+a” cos [/\y (x)+1 f p(t dt]E + O( UW(X)) '
We get
B2 (1, 1) = [/\y -1 [ p(t)dt] E,+la +e-i[M,+<x)_§ [ p(t)dt] £
" M2 " (25)
+%a_el[)\y (x ;falp t)dt]Em N %a‘eil[}w @+t [ p(t)dt]Em N O(%e"f”(’f))
Let f(x,A):=0 (%eaw(x)) and note that

1 | —iaprw-L [
¢2(x, 1) = sae Dot Lroly 4 g ).
From a simple computation at equations (25), we get

2ifA 1 d _Z’L
g(x, A) = z[ pr)-, f p(t) t]E + ol oz 1 lelE + [z_& 21[)\04(): ay) ]Em
M@k [ (t)dt]

+2[ — f(x,A) Eyp.

Let’s examine g (x,A) = O (%) accuracy.

a—1 21[)\01(3( aﬂ—ﬁ]Em’

|g x, )\)| < ‘621‘[/\y+(x)—3Y fa: P(t)dt]Em| " |ﬂ62i)m1 Em| +|%te

l\p*(r)fﬁJ

st

- }, [ v

Enf (x, /\)’ o[

<20, L|5 e

jin]

20‘111E + 2(mem + %e—gy+(x)eay+(x)Em

s
=

Furthermore , 0 > ¢|A|, ¢ > 0in D. Thus,—0 < —¢ |A| and e 29" ™) < p=ellu" @)
Since £ — 0, x < cet" @ (¢ > 0). Thus, e ™ < . We get

gx,A) = O(%) A — oo . Hence,

P2 (x,A) = —oz exp(—z(/\y (x)—lﬁ p(t)dt)) (1+O(%)),|/\|—>oo.

Derivativing both sides of (23) and using the first formula (25), we could get the formula of (24) similarly. [J

—_c
AT

Lemma 1.11. When |A| — oo, ¢35 (x, A) and ¢; (x, A) have the following asymptotic formulas ona, <x <1,

1 . 1™ 1
B3 (1, 1) = 5B exp (—1 (Ak* -3 f b (D) dt)) En (1 N O(X)) 26)
o5 (x, A) = %ﬁ* (p(x)—AB)iexp (—i ()thr (x) — % fx p(t) dt)) E,+0(@) (27)

—_ aﬁz

where k* (x) = £px F ay + u* (a2), s* (x) = £px F far + u~ (a2),5 = (az F T)

Proof. Since ¢3 (x, A) is the solution of initial value problem (9) , we have

s (x, 1) = B* cos [Ak* (x) = & [" p (B dt| + p~ cos [ Ak~ (x) = § [“p (1) alt]
+p~ cos [/\5+ (x) + % j::p 0) dt] + B* cos [/\s‘ (x) + % fu:p 0 dt] +0 (%eak%x))
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We get
b5 (1, A) = ﬁ+ [/\k @-3 f p(t)dt] ;e—i[,w(x)_% N p(t)dt]
L ei[/\k*(x)—% NG LB e—z[)\k’(x)—% [ oy o)
N ei[/\s*(x)+% L] e e—i[/\s*(x)+/1§ L ptoee]

+52_+ei[/ls’(x)+% I p(t)dt] + %e—i[/\s’(x)ﬂ% I, p(t)dt] +0 ( 1 40k (3 )
Let f (x,A) := ( “k+(")) and note that

+ . b1 (%
s o) = e T g )

From a simple calculation at equation (28), we get

g6 A) = 21[Ak+(x sz(t)dt]Em e Zi[(ﬁﬂ*ﬁazml)f% I p(t)dt]E

+£_;ezi[a(ﬂz—ﬂ1)—3 ft'z P(f)df]E + ﬁ 21# (a2) + ,[ 21[5(7? a)

m

; [Ak* (-1 & [ v

+e2ia1 +62i[[€n—ﬁa2+auz—aa]] + 7

f(x,A)En
Let’s examine g (x,A) = O (%) accuracy.

‘g x, A)| < e2i[/\k+(x)—% L p(t)dt]Em .\

B Zz[a(az—al)—gf pt)dt
ﬂ+

g_; eZi[(ﬁn—ﬁuzﬂzl)—% I p(t)dt] Em‘

+ +|g_; ezi#+(a2)Em| + '2_; eZi{i(n—az)Em‘

ei[x\k*(x)—% By v

+ |62ia1 Em’ + |62i[ﬁn—ﬁaz+aaz—am]]§m | + 7 f (x,A)E,

Se—Z(rk*(x) + 5_; e—2(7k+(x) +Jﬁ_;|e—2(mz + |ﬁ_;|e—2(mz + ’g_;’e—Zaﬁx

(x) eZokJr (x)

+e—2cm1 + e—Zok+ X) + %e—Zak

In additionto, ¢ > ¢|A|, ¢ >0in D . Thus,—o < —¢ MI and e 29K < el (@)
Since £ — 0, x < cé*'® (c > 0). Thus, e 2F'® < e - We get

gx,A) = O(%) A — oo . Hence,

3 (x,A) = —/3 exp(—z(w(x) ; p(t)dt)) (1+O(%)),|/\|—>oo.

Derivativing both sides of (26) and using the first formula (28), we could get the formula of (27) similarly. [J

2. Multiplicities of eigenvalues of the vectorial problem

In the section, we find the conditions on the potential matrix function (2Ap (x) + g (x)), under some con-
ditions, the problem (1) — (3) can only have a finite number of eigenvalues with multiplicity m. Where

p(x) € W; [0, ] vep (x) = {pij (x)}:;=1 ,q(x) € L, [0, 7] and g (x) = {q,-]- (JC)}Z,=1

Theorem 2.1. Let m > 2. Assume that, for some i, j € {1,2,...,m} withi # j
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either
o By e+ S [y oy + CY [ iy () dx £ 0 o)
"y eode s “* [ gy dx + BL Y [F a5 @ dx %0
or
0 fom [Piz’ () - pjj (x)] dx + % I ’jz [Pii (x) = pjj (x)] dx + @ fu: [Pii () —pjj (x)] dx # 0 (30)

+12 +)? T
B[00 - ;0] dx + ©E [ [0 () = gy @] e+ EL [ [0 - g (9] dx % 0
where a* = 1 (1 + %), gt =1 (1 + %).Then, with finitely many exceptions. The multiplicities of the eigenvalues of
the problem (1) — (3) are at most m — 1.

Proof. (i) We assume that (29) holds. Suppose, to the contrary, that there exists a sequence of eigenvalues
{An};y whole multiplicities are all m. Obviously, A, — o0 as n — co. From the equations in (9). Denoting

¢3(x,A) = {y; (x)}fn, Y when A = A, forn=1,2,..., we get
i,j=

() 0+ (A = @Apis () + g (00) s (0 — Y, @Api () + g (09) s () = 0 (31)
k#i
and .,
(v7) @)+ (= @Api (0 + s ) v () = Y (2Apis (x) + g (¥)) i (x) = 0 (32)
kej

Multiplying (31) and (32) by y;; (x) and yf (x) respectively, then subtructing one fom the other and using
(26), nothing that the eigenvalues of the problem are all real, we have

() @y - @ (53) @) = X @Api )+ 01 ) (33,0 ¥ 00 - v 0 3 )
k#i
= (24pij () + 4;; () [yf] () j; () = v () 7 @)
+ Lo (2495 ) + 5 (0) (v @) 5 0 = v @ ;@)

+\2 X
~ (249 @) + g5 () [(ﬁ 4) cos? (/\k+ () - % f p(b) dt) +o(1+ %) (33)
similarly, from the equations in (6), denoting ¢, (x, 1) = {y; (x)};njzl, we get
((57) @930 - v 0 (57) @) = o

(ZApzj(x)+q,](x))[—cos (/\y (x) - f p(t)dt)] ( 1)

similarly, from the equations in (4), denoting ¢; (x, 1) = { y?]. (x)}r,n, o we get
ij=

((3) 00,0 - s @ (12) ) = =@y 0+ 0, ) cos 0] + 0 ) )

When A is an eigenvalue with multiplicity m, we have ¢; (, A) = 0,,. By integrating both sides of (33) from
a ton, for A, > A and n — oo, we obtain

() @ w5 - @) () @) =

; (36)
- faz [_ (2Api;‘ (x) + g4 (x)) [ﬂ cos ()\k+ (x) - ;, f p(t) dt)] + OG)] dx



A. Ergiin /T]OS 5 (2), 73-84 82

By integrating both sides of (34) from a; to a, and appliying the boundary condition

~((v5) @50 - w3 0 (v5) @) =

J (37)
= Ju [— (24p5 () + g5 (x))[‘*j cos? (A" () = 3 [ P(t)dt)]+o ]d"

By integrating both sides of (35) from 0 to 4; and applying the boundary condition ¢’ (0, A) = 0,,, we obtain,
for A, - Aand n — oo,

((y”) (x) %] (x) — yu (%) (3/1] (x) f [ZAp,j (x) + gij (x)) [cos (Ax)]+O( )] dx (38)

Sum the above (36), (37) and (38), then use the initial conditions at point x = a; and x = a,, we get

0=— [ [(2Api () + 4ij (%)) [cos? (Ax)| + O (4)] dx
. [ [ (2293 () + 5 () [ 952 cos? (Ap* ()~ L [ p 0y ) ]dx

+f [ (2/\;71] x)+q1](x))[(ﬁ) cos ()\kJr -1 f p(t)dt)] dx+O<%)

By a simple computation, one can see that

fa (ZAPz] (x) + qij (x)) dx + L (a+) (2/\}71] (x) + gii (x)) de + ¥ ) (ﬁ ) f (2/\}71] (x) + i (X))
=- fo [(2)\;91] (x) + gij (x) cosZ/\x] dx
- [ [(2/\191; () + 45 (@) [ cos2(Ap* (@) - L [Fp (1)) ]dx (39)

- I [(2/\pij(x)+q,-]- (x))[(ﬁ) cos2 (A (@) -1 [ p(t)dt)] dx+0(1)

= =21 [" pij (x) cos (2Ax) dx — [1" gij (x) cos (2Ax) dx — 20 @) jZZ pij () cos 2Ap* (x) cos 2 dx
—@ ™ g5 (x) cos 24 (x) cos 20t — 229 i [ py; (x) 204 (x) sin 2

_% fa‘:Z gij (x) sin2Au™ (x) sin 2UT(’“)alx - 2/\(“%)2 fﬂ: pi; (x) cos 2k* (x) cos %dx

o J 7 3) cos 22k" () cos Ed 2L I i () sin 22k (x) sin 2

_(F%)Z f i gij (x) sin 2Ak* (x) sin de

where v (x) = f p(D)dt, t(x) = f p (t)dt. Then, we obtain, for A, — coand n — oo,
-2 fo pij (x) cos 2Ax) dx — 2(a i fﬂz pij (x) cos 2/\” (x) cos 2 2v(x 2000 7,
-2 - fa pij (¥) 24" (%) sin 22 gy — Z(ﬁ )y f pi; (x) cos 2k* (x) cos 2t(x)dx
_2@ faz pij (x) sin 2Ak* (x) sin %dx

By Riemann-Lebesgue Lemma, the right side of (39) approaches 0 as A, = A and n — co. This implies that

" pij x)dx+(“+)2  pi () dx + L ﬁ+) “pii () dx =0
o p] p] p]
j(; qij az i () dx + B) f gij (x)dx =0

We have reached a contradiction. The conclusion for this case is proved.
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(i) Next, we assume that

1 +32 2 +\2  n
f (2)\;9,-]- (x) + gij (x)) dx + (a4) j: (ZApij (x) + gij (x)) dx + (ﬁ4) jﬂ; (2/\}7,-]- (x) + gij (x)) dx=0

or
Fspde+ CF s @+ CL [Tsy dx=0,vi

where s;; (x) = (2)\;9,-]- (x) + gij (x)).

and ,

foal [s,-i (x) —sjj (x)] dx + % j;f [sii (x) =sj; (x)] dx + Q fu: [Sii (x) = sj; (x)] dx#0

without loss of generality, we assume that fori=1,j =2

1 +\2 ) +\2 T
f 51 () — 520 ()] + 4 f 511 () — 52 (@] + & 4) f (512 () — 522 (9)] dx # 0
0 a ap
1 _1 1 _1
i 7 i 7
2 2 2 2
K: 1 K: ]-
1 . 1

and y = K - t. Then, the problem (1) — (3) becomes

(40)

P+ (A25(x) —R(x))t =0 }
#©) =+ (n)=0

where R (x) = K™1S (x) K. By making a simple computation, we get

}1 (11 +522) + 512 }1 (s22 — s11) * * *
% (22 — 511) % (511 +522) +512 * * *
R(x) = * * qs3 .- ()
* * : ’
* * Gmm

We note that the two poblems (1) — (3)and (40)have exactly the same spectral structure. Denote R (x) =
{ri]» (x)}i,jzl' Since

foul 12 (x) dx + % jzz 12 (x) dx + (ﬁ%) fu: 12 (x) dx =
F 511 () = 52 @)1 + 8 [ [s513 () = 520 ()] + L [T [s11 () = 520 (9] dx # 0
0 1 2

By part (i) , the conclusion of the theorem holds for the problem (40), and hence holds for the problem
MH-3). O
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