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The Hadamard-type Padovan-p Sequences

Yesim Akiiziim?

?Department of Mathematics, Faculty of Science and Letters, Kafkas University, 36100 Kars, TURKEY

Abstract. In this paper, we define the Hadamard-type Padovan-p sequence by using the Hadamard-type
product of characteristic polynomials of the Padovan sequence and the Padovan-p sequence. Also, we
derive the generating matrices for these sequences. Then using the roots of characteristic polynomial of
the Hadamard-type Padovan-p sequence, we produce the Binet formula for the Hadamard-type Padovan-p
numbers. Also, we give the permanental, determinantal, combinatorial, exponential representations and
the sums of the Hadamard-type Padovan-p numbers.

1. Introduction

It is well-known that Padovan sequence is defined by the following equation:
Pn)=Pn—-2)+P(n-23)

forn >3, where P(0) =P(1)=P(2) =1.
Deveci and Karaduman defined [8] the Padovan p-numbers as shown:

Pap(n+p +2) = Pap(n + p) + Pap (n)

for any given p(p=2,3,4,...) and n > 1 with initial conditions Pap (1) = Pap(2) = --- = Pap(p) = 0,
Pap(p+1)=1and Pap(p +2) = 0.

It is clear that the characteristic polynomials of Padovan sequence and the Padovan-p sequence are
P(x) =x*—x—T1and P, (x) = x"*? — x — 1, respectively.

Akuzum and Deveci [1] defined the Hadamard-type product of polynomials f and g as follows:

% - - e b)) b — ab;  if abi#0
f(x) = g(x) = Zo’ (a; * b;) ', where a; + b; = { wtb i ab -0
= ’

such that f(x) = 2,X" + a,-1X™ 1 + -+ + a1x + ap and g(x) = byx" + b1 XL + -+ + byx + by.
Suppose that the (1 + k)th term of a sequence is defined recursively by a linear combination of the
preceding k terms:
Ap+k = C0An + C1Ap41 + -+ + Ch—10n+k-1
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where ¢y, c1, ..., 1 are real constants. In [13], Kalman derived a number of closed-form formulas for the
generalized sequence by the companion matrix method as follows:

[0 1 0 --- O 0
o o1 - 0 0
0 0 0 . 0 0
A= [ai’j]kxk - .
0 0 O 0 1
o C1 C Ck—2 Ck-1 |

Then by an inductive argument, he obtained that

ap ay
n a1 An+1
L k-1 Ap+k-1

forn > 0.

Recently, many authors studied number theoretic properties such as these obtained from homogeneous
linear recurrence relations relevant [2, 5-12, 14-20]. In [1], Akuzum and Deveci defined the Hadamard-type
product of two polynomials and they obtained the Hadamard-type k-step Fibonacci sequence by the aid
of this the Hadamard-type product. Then they studied properties of this sequence in detail. In this paper,
we define the Hadamard-type Padovan-p sequence by using the definition of Hadamard-type product in
[1]. Also, we produce the generating matrix of this sequence. Then we give relationships between the
Hadamard-type Padovan-p numbers and the permanents and the determinants of certain matrices which
are produced by using the generating matrix of the Hadamard-type Padovan-p sequence. Also, we obtain
the combinatorial representations, the generating function, the exponential representation and the sums of
the Hadamard-type Padovan-p numbers.

2. The Hadamard-type Padovan-p Sequences

We define a new sequence which is defined by using Hadamard-type product of characteristic poly-
nomials of Padovan sequence and the Padovan-p sequence and is called the Hadamard-type Padovan-p
sequence. This sequence is defined by integer constants P! = P! = ... = Pf, = 0 and PZ .1 = 1 and the

recurrence relation

=ph

n+p

Ph

n+p+2

-Pl +P' P! 1)

n+l

for the integers n > 0 and p > 4.
By relation (1), we can write the following companion matrix:

[0 1 0 0 -1 0 1 -17
1 0 0 0 0 0 0 O
o1 o O - 0 0 0 O
o o0 1 o o0 --- 0 0 O
M, = o 0 o 1 0 O -~ 0 O
0 0 0 0 1 0 0
0 0O 0 o 1 0 O
0 0 O 0o 0 0 1 0

A(p+2)x(p+2).



Y. Akiiziim /TJOS 5 (2), 102-109 104
The matrix M, is said to be a Hadamard-type Padovan-p matrix.

It can be readily established by an inductive argument that

- ph h h _ ph h _ ph _ph
Pn+p+1 Pn+p+2 Pn+p—1 Pn+p72 Pnﬂﬂ Pn+p—1 Pn+]ﬂ
h h h _ ph h _ ph _ph
PﬂﬂJ Pn+p+1 Pn+p—2 Pn+p—3 Pn+p—1 Pn+p—2 Pn+p—1
h h h _ ph h _ ph _ph
n_ Pn+p—1 Pﬂﬂ’ Pn+p—3 Pn+p—4 Pn+p—2 Pn+p—3 Pn+p—2
() = . . . @
M, : :
h h o _ ph h h _ph
Pnz—l Pill+2 Pﬁ—l P?—Z IZ” Pngl I;Tl
—_— 1 —_— —_—
P” Pn+1 Pn—2 Pn—3 pn—l Pn—2 Pn—l
where M isa (p —3) X (p — 3) matrix as follows:
[ ph _ ph h _ ph . h _ ph
Pn+p+3 Pn+p+1 Pn+p+4 Pn+p+2 Pn+2p—1 Pn+2p—3
h _ ph h _ ph e h _ ph
Pn+p+2 Pn+p Pn+p+3 Pn+p+1 Pn+2p—2 Pn+2p—4
h h h _ ph h h
Pn+p+1 Pn+p—1 Pn+p+2 Pn+p Pn+2p—3 Pn+2p—5
h _ ph h _ ph h h
Pn+3 Pn+1 Pn+4 Pn+2 Pn+p—1 Pn+p—3
h _ ph h _ ph h _ ph
Pn+2 Pn Pn+3 Pn+1 Pn+p72 Pn+p—4

for n > 3. Also, It is easy to see that det M, = (-1).
Now we concentrate on finding a Binet formula for the Hadamard-type Padovan-p numbers.

Lemma 2.1. The characteristic equation of the Hadamard-type Padovan-p sequence xP** — xP + x> — x + 1 = 0 does
not have multiple roots.

Proof. Let f(x) = xP*2 —xP + x> —x + 1. It is clear that f(0) # O and f (1) # 0 forall p > 4. Let A be a multiple root
of f(x), then A ¢ {0,1}. If it is possible that A is a multiple root of f (x) then it follows that f (A) = 0and f (1) = 0.
Now, we consider f (1) = AP*2 — AP + A3 — A + 1. So, we obtain
B A-1
IEE
Moreover, we may write f (A) = (p + 2) AP*1 — pAP=1 + 312 — 1 and hence we get
=3+
CERDIE
From (3) and (4), the following equation can be obtained:

312 -1
2B A2 A+ 1

Using appropriate softwares such as Mathematica Wolfram 10.0 [21], we obtain that there is no solution for p > 4.
Since all p’s are integers with p > 4, it is a contradiction. So, the equation f(x) = 0 does not have multiple roots. [

AP )

p

p=1+

If x1, X2, ..., Xp42 are roots of the equation a2 —xP +x3 —x + 1, then by Lemma 2.1, it is known that x;,
X2, ..., Xp42 are distinct. Define the (p +2) X (p + 2) Vandermonde matrix VP*2 as shown:

- p+1 -
@™ @ ()
5 (x1) (E5) . (xp+2)
VPt = . . .
X1 X2 Xp+2
1 1 1
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Assume that )
n+p+2—i

1 .
n+p+2—i

WG j)=|

n+p+2—i
p+2

and VP*2 (i, j)isa (p + 2)X(p + 2) matrix obtained from V?*? by replacing the jth column of V/*2 by WF*2 (i, j).

Theorem 2.2. Let (Mp)" = [mf’].”], then
det VP*2 (i, )
W detVrt2

i _

forn>3andp >4.
Proof. Since the eigenvalues of the matrix Mp, x1, X2, ..., X,12 are distinct, the matrix Mp is diagonalizable.
Let DP*2 = <x1,x2, ... ,xp+2), then we easily see that MpV#*™? = VP*2DP*2_ Since VP*? is invertible, we can

; +2\7! k +2 : e Qi +2 ny7p+2 +2 +2\"
write (V” ) MpV* = DP*2. Then, the matrix Mp is similar to D?** and so (Mp)" VP** = V* (D’” ) . Hence
we have the following linear system of equations:

pn, ptl prp o pn _ ntp2—i
MGy Xy T, Xy e+, =%
pn, p+l prp pn _ nAp2-i
MG Xy T Xyt t I, =%
pn, p+1 pn_p o pn o ntp+2—i
My Xpp T Xy Tt = X0

Therefore, for eachi,j =1,2,...,k, we obtain

pn_ det VP2 (i, j)

Lj det Vpr+2
[

From this result we immediately deduce:
Corollary 2.3. Let P! be the nth the Hadamard-type Padovan-p number, then

P det V"2 (p+2,1)  detV?*2(p+1,p+2)
" det Vp+2 - det Vr+2

forn>3andp > 4.

Now we concentrate on finding the permanental representations of the Hadamard-type Padovan-p
numbers.

Definition 2.4. A u X v real matrix M = [mi,j] is called a contractible matrix in the k'™ column (resp. row.) if the
k' column (resp. row.) contains exactly two non-zero entries.

Suppose that x1, xy,...,x, are row vectors of the matrix M. If M is contractible in the kth column such
that m;j # 0,mj; # 0 and i # j, then the (u — 1) X (v — 1) matrix M;jx obtained from M by replacing the i
row with m;rx; + mjrx; and deleting the jth row. The k" column is called the contraction in the k™ column

relative to the i row and the j™ row.
In [3], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order @ > 1 and N is a
contraction of M.
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Let o > p + 2 be a integer and let AP* = [a’; ’.“] be the a X a super-diagonal matrix, defined by
]

ifi=rand j=r+1forl<r<a-1,
i=rand j=r—-1for2<r<a
1
and
pa i=rand j=r+pforl<r<a-p,
B = ifi=rand j=r+p-2forl<r<a-p+2
-1 and
i=rvand j=r+p+1lforl<r<a-p-1,
0 otherwise.
Then we have the following Theorem.
Theorem 2.5. Fora >p+2andp >4,
perAP* = P’;+p+1.

Proof. The assertion may be proved by induction on a. Let the equation be hold for a > p + 2, then we show
that the equation holds for « + 1. If we expand the perAP* by the Laplace expansion of permanent according
to the first row, then we obtain

per APl = per A1 — per APAP*2 4 per AP — per APATPL,

. a-1 _ ph ,a—p+2 _ ph
Since perA” = Pyyy perAPOTPTE = P,

perApe+l = ph pa2- Thus, the proof is complete. [J

perAPAP = Ph - and perAPaP~! = Pl it is easy to see that

Leta > p+2and let B = [bf ]a] be the @ X a matrix, defined by

ifi=rand j=r+1forl<r<a-p-1,
1 i=rand j=r-1for2<r<a
and
- i=rand j=r+pforl<r<a-p-1,
0 ifi=rand j=r+p-2forl<r<a-p-1
-1 and
i=rand j=r+p+1lforl<r<a-p-1,
0 otherwise.
Now we define the a X @ matrix CP* = [cf ]a] as follows:
(a—p—Z)th
l
1 ... 1 0 e 0
1
cra | 0 Brect
0

Then we can give the following Theorem by using the permanental representations.

Theorem 2.6. (i). Fora >p+2,
perB'® = —ph

a=1"

(if). Fora > p +2,

a—2
a _ h
perCP? = — E P
i=0



Y. Akiiziim /TJOS 5 (2), 102-109 107

Proof. (i) .Let the equation be hold for @ > p + 2, then we show equation hold for a + 1. If we expand the
perBP“ by the Laplace expansion of permanent according to the first row, then we obtain

perBPAtL = perBPATl — perBP P2 4 perBPA P — perBPA P
_  _ph ho_ ph I
- Pa—Z + Pa—p+1 Pa—p—l + Pa—p—Z'

So, we have the conclusion.
(ii) . If we expand the perCP* with respect to the first row, we write

perCP* = perC”'“‘l + peer'“_l.
From Theorem 2.5 and Theorem 2.6. (i) and induction on ¢, the proof follows directly. [J
Let the notation M o K denotes the Hadamard product of M and K. A matrix M is called convertible if

there is an u X u (1, -1)-matrix K such that per M = det(M o K).
Let G be the a X a matrix, defined by

1 1 1 1 1

-1 1 1 1 1

1 -1 1 1 1
G= :

1 1 -1 1 1

1 1 1 -1 1

fora>p+2.

Corollary 2.7. Fora >p+2andp >4
det(AP% o0 G) = PZ p+ls
det (B o G) = _PZ—1
and

a—2
det(C"* o G) = — Z P,
i=0

Let K (ky, ks, ..., ky) be a v X v companion matrix as follows:

ki ky - ke
1 0 0
K(k],kzr-”rkv): : . .
o --- 1 0

Theorem 2.8. (Chen and Louck [4]).The (i, j) entry kl(.l;,) (ki, ko, ..., ky) in the matrix K" (ki, ko, ..., ky) is given by
the following formula:

y L+t +--+1, 4+t
kl(-,j)(kl,kzl---,kv)= Z A x(l )k?'”k;v ®)

(i) ti+tr+---+1t, t,..., ty

. . . . . . . . HAtty)! -
where the summation is over nonnegative integers satisfying t; + 2ty + -+ + vty =u —i+j, tlt:' ey = (1;—;',1) isa
reerbo crlye

multinomial coefficient, and the coefficients in (5) are defined to be 1 if u =i — j.
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Then we have the following Corollary for the Hadamard-type Padovan-p numbers.

Corollary 2.9. For p > 4, let P! be the nth the Hadamard-type Padovan-p number. Then

1.
PI:, = Z (t1 +- 4 tp+2) (_1)tp,1+tp+2

t1,...,t
(flffz---,fwz) b 12

where the summation is over nonnegative integers satisfying t; + 2t +--- + (p +2) tpyo =n—p - L.
ii.

n

P _ tp+2 MR
t1+t2+"'+i’p+2

(_1)tp,1 +pi2
(t1,t2-/1t) b tp+2 )

where the summation is over nonnegative integers satisfying t; + 2t + -+ + (p +2) tpyo =n + 1.

Proof. In Theorem 2.8, If wetakei =p+2and j=1,forcasei andi=p+1, j = p+2, for case ii., then the
proof is immediately seen from (Mp)n. O

The generating function of the Hadamard-type Padovan-p sequence is given by:

P!
1 —x2 4 ap=1 — xp*l 4 xp+2

fp (x) =

It can be readily established that the Hadamard-type Padovan-p sequences have the following expo-
nential representation.

Theorem 2.10. The Hadamard-type Padovan-p numbers have the following exponential representation:
fp () = 2P ex i (x_2)1 (1 — P8 P - x”)i
’ ’ =
wherep > 4.

Proof. 1t is clear that

fr ()
In ppﬂ =-In (1 2+ x”*z)
X
and
—In (1 —x2 -t x’”z) = —[-2? (1 - - x”) -

A simple calculation shows that

o (42} .
lnfp(x) :Zx—,)(l—xp_3+xp_1—x”)l.

xp+1

Thus the conclusion is obtained. [
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Now we consider the sums of the Hadamard-type Padovan-p numbers.

Let .
T,=Y P
i=0

for n > 3 and p > 4, and let Q, be the (p + 3) X (p + 3) matrix, such that

0 --- 0

O = =

Qp = Mp

Then it can be shown by induction that
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