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Analysis of Inverse Euler-Bernoulli Equation with periodic boundary
conditions
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Abstract. In this study, which aims to solve the inverse problem of a linear Euler-Bernoulli equation,
the boundary condition has been periodically defined and integral overdetermination conditions. The
conditions of the data used in the generalized Fourier method used to solve the problem have regularity
and consistency.

1. Introduction

T(t, x) is the displacement at time t and at position x , o(x) is the bending stiffness, and k(x) > 0 is the
linear mass on the Euler-Bernoulli problem . The behavior of an unloaded thin beam moving transversely
can be described using the fourth-order partial differential equation:

k(x)(*T)/(9t?) + 0(x)(d*T)/(dx*) = 0,t > 0,0 < x < L. (1)

[1] studied isospectral properties and inhomogeneous variants of this equation. [2] used the Lie sym-
metry approach. [3] tried to solve it with Cartan’s equivalence method. [4] obtained exact equivalence
transformations by dealing with this problem initially [3] with some ambiguous functions. [5] investi-
gated the transverse vibrations of a beam moving with time using the symmetry method and obtained
approximate solutions for the problem.

If elastic modulus, area of inertia, mass per unit length, transverse displacement position x at time ¢ and
applied load are described as E, I, o, T(x, t) and f respectively, the PDE which is fourth-order can be given
as below [6];

(ElTy)g +aTy = f(x,1),t > 0,0 <x < L. (2)

Toxex + Ty = f(x/ t),t >0,0<x<L. (3)

where E, I, a as constants [7].
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Vibration, buckling and dynamic behavior, which are frequently encountered in many fields from
engineering to medicine, can be defined in a much broader way with the Euler-Bernoulli equations [8-16].
Many studies have been conducted on linear and quasi-linear equations and their applications in different
fields [8-13].

Since periodic boundary conditions are encountered in many events, especially heat transfer, it has
many application areas [14-16]. The existence and uniqueness of the solution of the problem are proved in
section 2 using the Fourier and iteration methods. The stability of the method used to solve the problem is
shown in section 3. Finally, a numerical procedure for solving the problem is presented in section 4.

Let T > 0 be fixed number and denote by Q:= {0 <x < m,0 <t < T}.

In case it is desired to obtain the function pairs {q(t), T(x,t)} that will provide the equation given by
Equation 4:

PT  I*T

ﬁ + &_x4 = q(t)f(xr t)r (x/ t) €Q (4)
TO,t) = T(m,1t)
T:0,t) = Tu(m,t)

Tw(0,t) = Twu(m,t) 5)

Txxx(()/ t) = Txxx(n/ t)/ te [O/ T]

T(X, 0) = (P(x)r Tt(xr O) = ll)(X), x € [O/ T(] (6)

H(t) = f xT(x,H)dx, t € [0, T] (7)

0

The known functions f(x, t),@(x), Y(x) and H(t) expressed in equations (4)-/7) are known functions and
are always continuous and have positive values. gets. The functions u(x, t) and r(t) are unknown. In the
heat dissipation in a thin rod, studies have been made to obtain the total amount of heat dissipated [? ].

Definition 1.1. {g(t), T(x, t)} is called the inverse problem .
Definition 1.2. v(x,t) € C(Q) is a test function and satisfies these conditions;
o(x, T) = v(x, T) = 0,0(0,t) = v(m, t), 0x(0, t) = Vx(7T, 1), Vxx(0, 1) = Ve (71, £), V2xx(0, , ) = Vxax (70, 1), € [0, T

Definition 1.3. u(x,t) € C(Q) can be called as generalized equation. Following equation can be obtained with the
generalized equation.:

Tt us

T n
ff({% + %} u— r(t)fv) dxdt — fv(x, 0)y(x)dx + fvt(x, 0)p(x)dx = 0.
0 0 0

0
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Nomenclature

@(x), P(x) Initial condition

gq(t) Unknown coefficient

H(t) Energy

T(x,t) Temperature distribution
f(x,t) Source function

To(t), Tek(t), Tsi(t) Fourier coefficients
M, M, M3 constants

F(t) Continous function

K(t, 7) Kernel function
Q:={0<x<m, 0<t<T}Domain of x,

2. Solution of this problem

Let us look for solution of (1)-(4) in the form:
t (o]

T(x,t) = uOT() + Z (T (f) cos 2kx + Ty () sin 2kx)
k=1

The Fourier coefficients in Equation 8 can be obtained by applying the standard procedure of the Fourier
method:

t n
1 2
T(x,t) = @o + Pot + — (t-1)q(0)f(E, T)dédT}
]

2
+i —<p k cos(2k)t + Yo sin(2k)?t | cos 2kx
el bl (2K
o [ t m
+Z —n(zzk)zfff(é,T,T)q(T)Sin(Zk)z(t—T)COSZkEdEd’L]Coszkx 8)
=] 0 0
+ ; »@sk COS(Zk)Zt + % sin(2k)2t] sin 2kx
o | t m
+) % f f £(&,7, T)q(7) sin(2k)*(t — 1) sin 2kEdEd | sin 2kx
p=) _n(Z) Sy

Definition 2.1. The pair {q(t), T(x,t)} € C (5) is called the classical solution of the problems (1)-(4) .

Theorem 2.2. Suppose that the following conditions hold:

(A1) H(t) € C2[0,T],
(A2) p(x)eC? [0, 7], Y(x)eCt [0, ],
P(0) = p(1), ¢'(0) = ¢'(m), @ (0) = ¢" (1), (0) = (), ¥ (0) = ¢’ (m),
(A3) f (x,)€C(Q), £(0,1) = f(r, 1), f(0,1) = fulr, 1),
(A4) [xf(x,tydx # 0, ¥xe [0, 7]
0

then the solution of system (1)-(4) has unique solutions.



I Baglan, T. Canel /TJOS 7 (3), 146-156 149

Proof. The assumptions ¢(0) = ¢(n), ¢ (0) = ¢ (), ¥(0) = ¢(n), f0,t) = f(m, 1), are verify for the repre-
sentation (7) of the solution T(x, ). Further, under p(x)eC? [0, 7], ¢(x)eC [0, 7], f (x,1) eC( ) the series (7)
converge uniformly in Q since their majorizing sums are absolutely convergent. Under the conditions,
since the majorizing sum of the t-partial derivative series are convergent, Ti(x,t), T(x,t) i is continuous
in Q. because the ma]orlzlng sum of t—partlal derivative series is absolutely convergent under the conditions

P(0) = p(10), '(0) = ¢ (n), @ (0) = ¢ (1), P(0) = Y(r), ¥’ (0) = ¢¥'(m), £(0,8) = f(m, 1), £(0,1) = fu(rm, 1) in Q.
From the (5) and under the condltlon (A1) to obtain:

s

H ()= f xTy(x, t)dx )
0
The formulas (5)-(6) yield the following equation:

H(t)-n Z (k) {(psk cos(2k)*t + G U gin(2k)2t + —L; (2k) ffsk(’c)q(’c) sin(2k)%(t — 1)d }

k=1
q(t) =
f Xf(x, tydx
0
From The second kind Volterra integral equation:
t
q(t) = E(t) + fK(t, 1)q(7)dr, te [0, T] (10)
0
H' (5= 7 Y. (2K gy cos(@hPt — 7 X, (2K) ee sin(2K)2t
F() = = - = : ()
[ xf(x, tydx
0

-7 2 (2k) ffsk(’c (1) sin(2k)*(t — T)dT
Kt 7) = ——"

(12)

e

f xf(x, t)dx

0
Let F(t) and the kernel K(¢, T) are continuous functions:

H () -n Z (2k) [f @(&) sin 2k£d£) cos(2k)’t — 7 ): (2k) (f Y(&) sin ZkEdé] sin(2k)?t
k=1

F(t) =

4

f xf(x, t)dx
0
we applymg partial integration method for convergence
Psk = 3 f (p(é) sin 2kédé = Zk(Pck (Zk)z qosk (2k)3 gock
0
Yo = 2 [P(&) sin2kEdE = — %y,
0

H' () +7 Y (K gk, cos(@b?t + 7 z (2K) Ly, sin(2)2t
F(h = = :

fnx f(x, t)dx
0
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H' (5 +7 Y, ¢, cos(KkPt+m Y. 4/, sin(2k)2t
k=1 k=1
Ft) = — ,
[ xf(x, tydx
0

H"(t)|+n§| W|+n§ ’
| P (pck P |¢ck|
T

f xf(x, t)dx

0
2| 0]+ £ fou ]+ 7 i
( O+ 7 L oo + 7 L |vd
M2

[F(t)] <

[F(H)] <

Taking maximum both of sides

2|1 @+ £ o+ £ il
M2

IE@)I <

¥ @0 [ o) sin(RR( - D)t
k=1 0

K(t, 7) =

TU

fxf(x, Hdx

0

foe = 2 [ (& 1)sin2kEdE = =% (fr),
0

0 t e
—n Y, (2k) [ 2 [ f(& 1)q(7) sin(2k)?( — 1) sin 2k& dEdT
k=1 0 0

K(t, 1) = -
fxf(x, Hdx
0
nff@(f) in(K2(t - 1)d
= @k \Jck XSIn( ) ( T) T
K(t,7) = SR
fxf(x, H)dx
0
o t
ny ()| | [ sin@k)2(t — T)d7
K, ) < —— ’

e

[ xf(x, tydx

0

Taking maximum both of sides

2% [l

K(t < =

IK(t, DI < e

Under the assumption (A1)-(A2) and according to Weierstrass M test the function F(t) and the kernel

K(t, t) are continuous functions The unique solution of the inverse problem (1)-(4) according to Volterra
Theorem. O
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3. Stability of Problem

The result in the theorem given below is valid for solving problems from equality (1) to (4).

Proof. Suppose that there exist positive constants M;, i =1,2,3 .

151

{o, ¢, H, f}satisfy the assumptions (A1)-(A4) of theorem 1 then the solution (u, r) of the problem
(1)-(4) depends continuously upon the data f, @, {, H.

Let us denote [|®|| = (||[H||c1o,r) + “(p”C1 01] + ”4}”6[0,71] + “f”c@). Let (u,7) and (i, 7) be solutions of inverse

problems (1)-(4) corresponding to the data ® = {¢, ¥, H, f} and @ = :@, Y, H,E, ?} respectively.

H@-H ¢ +n f (qo;k - (p_ck) cos(2k)*t + f (l])ck - llz_ck) sin(2k)%t
k=1 k=1

F(t) ~F(f) = -
[ xf(x, tydx

0

Equation (13) can be obtained with the maximum of both sides of this equation:

l)bck - l)l}ck

Pk =P + ‘

P~ Fl < {||H'<t> -H)|+ ni‘
k=1

}_

oo

Y [ (fu), sink)?(t — 1)dt
k=1¢

T

fxf(x, t)dx
0

K(t, 1) =

o oo t
Y [ (fa),sin@k2(t - vdr Y [ (fu), sin@k)(t - t)dt
k=19 k=19

K_K: e - ke
f xf(x, t)dx f xf(x, t)dx
0 0

k=

—

0

n oi ft(fck) sin(2k)?(t — ’C)dT] (fn xf(x, t)dx) - (n )oi ft(fck) sin(2k)?(t — ’C)dTJ (fn xf(x, t)dx]
0 0 0

[fn xf(x, t)dx] [fn xj%dx]

0 0

(13)
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(n f ft(fck) sin(2k)%(t — © d’[) (fxf(x t)dx]
K-K = ~ Lo 0

(fn xf(x, t)dx] [fx mdx]

(7‘( Y, f (fur),, sin(2k)2(t — T)d’[) [fxf(x, t)dx]

k=1¢ 0

[f xf(x, t)dx] [fn xf(T,t)dx)

0 0

[” ¥ ft (fer), sin(2k)*(t — T)dr] [f xf(x, t)dx]
k=19

=1 0

[fn xf(x, t)dx] [fn xmdx]

(7‘5 io: ft(fck) sin(2k)?(t — T)dT] [fxfﬁdx]
k=19

0

[fn xf(x, t)dx] {fn xmdx]
0

0

+

[n f f((fck)x - M) sin(2k)?(t — T)dT] (fn xmdx)
- 0 0

K-K = = T b4
[fxf(x, t)dx] (fxf(x, t)dx]
0

0

—

[fx (fCet) - fx, 1) dx] (n y [ (fa), sin(k)2(t - T)df]
0

k=10

(fn xf(x, t)dx) [fn xmdx]

0

FM Y |, - e o mlf -7

= M2 + M2
2 2

[K-K] <

Equation (14) can be obtained with the maximum of both sides of this equation:

k-] < = m| - f||+—||T||Z (ft)y —

Using same estimations, we obtain

la =l <} = B[+ ik [ = 7]+ [l [|< = <.

From (10)-(11) we also obtain that

152

(14)
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|

libck - libck

+

Pk = Pk

b=l = e (o -0l

2l g A5 -G
M(1 — |T||K]) nM(1 — |T|K]) L ck)x ck)x

We obtain the difference u and u from (5):

t
T - 3 ((PO—%H(%—%)Hf(t—ﬂq(r)(fo—%)dr‘
0
S P (v~ ¥at)
+ I;‘ (Pek — Per) Cos(Zk)zt + o2 sm(2k)2t cos 2kx
* for = fux) g(7) sin(2k)?(t — T)d | cos 2kx (15)
L [ (07 ‘
+ IZZ‘ _(%k - ¥sk) cos(2k)*t + % Sin(Zk)zt] sin 2kx
) [ 1 t o
+ ) = | (foe = fax) 9(7) sin(2k)*(t — 7)d | sin 2kx
;}Zk)zof( ¢~ fu) ‘

Taking maximum both of sides

Ir-71 < Slwo -l + 5 millgo - Tl + 5 m|lfo - 7]

+ Y (e = el + lpse - 7t

k=1

00

+ Y = (e~ Tl + e~ 9l

i (2k)?

+ Y AT fok = Fee lall + 1T e = Foe
k=1 k=1

+ YT Feel llg =3l + Y im [ Fee] g - 3l
k=1 k=1

Applying Holder inequality,
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1 1 — 1 _
=il < 5l =oll + 51710~ ol + 5 171 [ fo - 7

+ Y (e = @] + lps - el
k=1
N3

1f[y 1 o _ EAY:
3| Lw [kZ[Ilwck—ebckn+||wsk—¢sk||r]
=1

23

(v 1)) ¢ )
Xz | X (m -7 lal)
k=1 k=1
S NI o 3
Xz | X (mlfe -7 lal)
k=1 k=1
S NG o 1
Uzl | X (m 7]l -l)
k=1 k=1
S NI o 1
o ;ﬁ ;(m 7| la -l

Ir-7 < 3 lloo-aell+ 5 millvo - Foll + 5 17170 - 7

(s8]

* Y. o=l + o~ 731)
Z_;iﬂ%k V]| + ([ = |
la]

Jal

o T fo = T

g 2T fo = Foe
22 1T

TC |—|
22 3 IT1|[fo

lg -]

7 -4l

IT=7T|| < Mi || — ]| + Ma || - 9| + M3 ||f - 7” + My ||H - IT”
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where

) me
My = 2V 6= ITTIKD

2 |T| 7
M, =
2 4w—mm&

{31
{ 3 =
M - ET il o] }

2’ "6(1 - ITIIK])" 6(1 - |TIIK])

|T| }
6(1 — [T |K])
we also obtain that

7= <

where
Ms = max {My, My, M3, My} .

For® —» ®thenu — . [

4. Numerical Method

We use finite-difference approximation for discretizing problem (1)-(3):

% (7] —2r] + T/7") + = (T{+2 — 4T, + 6T/ 4T, +T. ) =q/f]
19 = gy = (T - 1) = (16)
T)=T) ., (17)
T, =T}, (18)
T, =T}, (19)
Té - Tj = T;\IX+3 T;\] - (20)

The domain [0, ] X [0, T] is divided into an N, X N; mesh with the spatial step size h = /N, in x direction
and the time step size T = T/N;, respectively.
xi, tj are defined by
=ih;i=0;1;2;..;,Ny;
]—]T,]—012 Nt,

T, - T(xl/t ) f] f(xl/ t]) q] Q(t])
Let us integrate the equation (1) respect to x from 0 to 7, we obtain

H// (t)

q(t) = f”f( (21)
0

The finite difference approximation of (18) is
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((Hi+1 —2HI + Hf—l) /’L’Z)

(" Fax)

where H' = H(t)), ¢/ = q(tj), j = 0,1,..., N;. We mention that the integral is numerically calculated using

q =

Simpson’s rule of integration.The system of equations (13)-(17) is solved and uf ,q

is determined.The condition for stopping the iteration depends on the value difference between the two

iterations. Iteration should be stopped when this difference is equal to the tolerance predicted previously.
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